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Abstract

Submodular functions can be exactly minimized in poly-
nomial time, and the special case that graph cuts solve with
max flow [19] has had significant impact in computer vi-
sion [5, 21, 28]. In this paper we address the important
class of sum-of-submodular (SoS) functions [2, 18], which
can be efficiently minimized via a variant of max flow called
submodular flow [6]. SoS functions can naturally express
higher order priors involving, e.g., local image patches;
however, it is difficult to fully exploit their expressive power
because they have so many parameters. Rather than trying
to formulate existing higher order priors as an SoS func-
tion, we take a discriminative learning approach, effectively
searching the space of SoS functions for a higher order
prior that performs well on our training set. We adopt a
structural SVM approach [15, 34] and formulate the train-
ing problem in terms of quadratic programming; as a re-
sult we can efficiently search the space of SoS priors via
an extended cutting-plane algorithm. We also show how
the state-of-the-art max flow method for vision problems
[11] can be modified to efficiently solve the submodular
flow problem. Experimental comparisons are made against
the OpenCV implementation of the GrabCut interactive seg-
mentation technique [28], which uses hand-tuned parame-
ters instead of machine learning. On a standard dataset
[12] our method learns higher order priors with hundreds
of parameter values, and produces significantly better seg-
mentations. While our focus is on binary labeling problems,
we show that our techniques can be naturally generalized to
handle more than two labels.

1. Introduction
Discrete optimization methods such as graph cuts [5, 19]

have proven to be quite effective for many computer vi-
sion problems, including stereo [5], interactive segmenta-
tion [28] and texture synthesis [21]. The optimization prob-
lem behind graph cuts is a special case of submodular op-
timization that can be solved exactly using max flow [19].

Graph cuts, however, are limited by their reliance on first-
order priors involving pairs of pixels, whereas there is con-
siderable interest in expressing priors that rely on local im-
age patches such as the popular Field of Experts model [27].

In this paper we focus on an important generalization of
the functions that graph cuts can minimize. These higher-
order functions, which [18] called Sum-of-Submodular
(SoS), can be efficiently solved with a variant of max flow
[6]. While SoS functions have more expressive power, they
also involve a large number of parameters. Rather than ad-
dressing the question of which existing higher order priors
can be expressed as an SoS function, we take a discrimina-
tive learning approach and effectively search the space of
SoS functions with the goal of finding a higher order prior
that gives strong results on our training set.1

Our main contribution is to introduce the first learning
method for training such SoS functions, and to demonstrate
the effectiveness of this approach for interactive segmenta-
tion using learned higher order priors. Following a Struc-
tural SVM approach [15, 34], we show that the training
problem can be cast as a quadratic optimization problem
over an extended set of linear constraints. This generalizes
large-margin training of pairwise submodular (a.k.a. regular
[19]) MRFs [1, 30, 31], where submodularity corresponds
to a simple non-negativity constraint. To solve the training
problem, we show that an extended cutting-plane algorithm
can efficiently search the space of SoS functions.

1.1. Sum-of-Submodular functions and priors

A submodular function f : 2V → R on a set V satisfies
f(S∩T )+f(S∪T ) ≤ f(S)+f(T ) for all S, T ⊆ V . Such
a function is sum-of-submodular (SoS) if we can write it as

f(S) =
∑
C∈C

fC(S ∩ C) (1)

for C ⊆ 2V where each fC : 2C → R is submodular. Re-
search on higher-order priors calls C ∈ C a clique [14].

1Since we are taking a discriminative approach, the learned function
does not have a good probabilistic interpretation. The word “prior” is used
loosely, as is common in vision papers that focus on energy minimization.
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Of course, a sum of submodular functions is itself sub-
modular, so we could use general submodular optimization
to minimize an SoS function. However, general submodular
optimization is O(n6) [26] (which is impractical for low-
level vision problems), whereas we may be able to exploit
the neighborhood structure C to do better. For example, if
all the cliques are pairs (|C| = 2) the energy function is re-
ferred to as regular and the problem can be reduced to max
flow [19]. As mentioned, this is the underlying technique
used in the popular graph cuts approach [5, 21, 28]. The key
limitation is the restriction to pairwise cliques, which does
not allow us to naturally express important higher order pri-
ors such as those involving image patches [27]. The most
common approach to solving higher-order priors with graph
cuts, which involves transformation to pairwise cliques, in
practice almost always produces non-submodular functions
that cannot be solved exactly [8, 14].

2. Related Work
Many learning problems in computer vision can be cast

as structured output prediction, which allows learning out-
puts with spatial coherence. Among the most popular
generic methods for structured output learning are Condi-
tional Random Fields (CRFs) trained by maximum con-
ditional likelihood [23], Maximum-Margin Markov Net-
works (M3N) [33], and Structural Support Vector Machines
(SVM-struct) [34, 15]. A key advantage of M3N and SVM-
struct over CRFs is that training does not require computa-
tion of the partition function. Among the two large-margin
approaches M3N and SVM-struct, we follow the SVM-
struct methodology since it allows the use of efficient in-
ference procedures during training.

In this paper, we will learn submodular discriminant
functions. Prior work on learning submodular functions
falls into three categories: submodular function regression
[3], maximization of submodular discriminant functions,
and minimization of submodular discriminant functions.

Learning of submodular discriminant functions where
a prediction is computed through maximization has
widespread use in information retrieval, where submodu-
larity models diversity in the ranking of a search engine
[35, 24] or in an automatically generated abstract [29].
While exact (monotone) submodular maximization is in-
tractible, approximate inference using a simple greedy algo-
rithm has approximation guarantees and generally excellent
performance in practice.

The models considered in this paper use submodular dis-
criminant functions where a prediction is computed through
minimization. The most popular such models are regular
MRFs [19]. Traditionally, the parameters of these mod-
els have been tuned by hand, but several learning methods
exist. Most closely related to the work in this paper are
Associative Markov Networks [31, 1], which take an M3N

approach and exploit the fact that regular MRFs have an
integral linear relaxation. These linear programs (LP) are
folded into the M3N quadratic program (QP) that is then
solved as a monolithic QP. In contrast, SVM-struct training
using cutting planes for regular MRFs [30] allows graph cut
inference also during training, and [7, 20, 30] show that this
approach has interesting approximation properties even for
the multi-class case where graph cut inference is only ap-
proximate. [9] is similar to this paper, in that it uses cutting
planes to learn submodular functions, though it only con-
siders the pairwise case. More complex models for learning
spatially coherent priors include separate training for unary
and pairwise potentials [22], learning MRFs with functional
gradient boosting [25], and the Pn Potts models (which
is included in AMN [31]), all of which have had success
on a variety of vision problems. Note that our general ap-
proach for learning multi-label SoS functions, described in
section 4.4, includes the Pn Potts model as a special case.

3. SoS minimization
In this section, we briefly summarize how an SoS func-

tion can be minimized by means of a submodular flow net-
work (section 3.1), and then present our improved algorithm
for solving this minimization (section 3.2).

3.1. SoS minimization via submodular flow

Submodular flow is similar to the max flow problem, in
that there is a network of nodes and arcs on which we want
to push flow from s to t. However, the notion of residual
capacity will be slightly modified from that of standard max
flow. For a much more complete description see [18].

We begin with a network G = (V ∪ {s, t}, A). As in
the max flow reduction for Graph Cuts, there are source and
sink arcs (s, i) and (i, t) for every i ∈ V . Additionally, for
each clique C, there is an arc (i, j)C for each i, j ∈ C.2

Every arc a ∈ A also has an associated residual capac-
ity ca. The residual capacity of arcs (s, i) and (i, t) are the
familiar residual capacities from max flow: there are capac-
ities cs,i and ci,t (determined by the unary terms of f ), and
whenever we push flow on a source or sink arc, we decrease
the residual capacity by the same amount.

For the interior arcs, we need one further piece of in-
formation. In addition to residual capacities, we also keep
track of residual clique functions fC(S), related to the flow
values by the following rule: whenever we push δ units of
flow on arc (i, j)C , we update fC(S) by

fC(S)←


fC(S)− δ i ∈ S, j /∈ S
fC(S) + δ i /∈ S, j ∈ S
fC(S) otherwise

(2)

2To explain the notation, note that i, j might be in multiple cliques C,
so we may have multiple edges (i, j) (that is, G is a multigraph). We
distinguish between them by the subscript C.



The residual capacities of the interior arcs will be chosen
so that the fC are always nonnegative. Accordingly, we
define ci,j,C = minS{fC(S) | i ∈ S, j /∈ S}.

Given a flow φ, define the set of residual arcs Aφ as all
arcs a with ca > 0. An augmenting path is an s − t path
along arcs in Aφ. The following theorem of [18] tells how
to optimize f by computing a flow in G.

Theorem 3.1. Let φ be a feasible flow such that there is
no augmenting path from s to t. Let S∗ be the set of all
i ∈ V reachable from s along arcs in Aφ. Then f(S∗) is
the minimum value of f over all S ⊆ V .

3.2. IBFS for Submodular Flow

Incremental Breadth First Search (IBFS) [11], which is
the state of the art in max flow methods for vision appli-
cations, improves the algorithm of [4] to guarantee polyno-
mial time complexity. We now show how to modify IBFS
to compute a maximum submodular flow in G.

IBFS is an augmenting paths algorithm: at each step, it
finds a path from s to t with positive residual capacity, and
pushes flow along it. Additionally, each augmenting path
found is a shortest s-t path in Aφ. To ensure that the paths
found are shortest paths, we keep track of distances ds(i)
and dt(i) from s to i and from i to t, and search trees S and
T containing all nodes at distance at most Ds from s or Dt

from t respectively. Two invariants are maintained:

• For every i in S, the unique path from s to i in S is a
shortest s-i path in Aφ.

• For every i in T , the unique path from i to t in T is a
shortest i-t path in Aφ.

The algorithm proceeds by alternating between forward
passes and reverse passes. In a forward pass, we attempt to
grow the source tree S by one layer (a reverse pass attempts
to grow T , and is symmetric). To grow S, we scan through
the vertices at distance Ds away from s, and examine each
out-arc (i, j) with positive residual capacity. If j is not in S
or T , then we add j to S at distance level Ds + 1, and with
parent i. If j is in T , then we found an augmenting path
from s to t via the arc (i, j), so we can push flow on it.

The operation of pushing flow may saturate some arcs
(and cause previously saturated arcs to become unsatu-
rated). If the parent arc of i in the tree S or T becomes
saturated, then i becomes an orphan. After each augmenta-
tion, we perform an adoption step, where each orphan finds
a new parent. The details of the adoption step are similar to
the relabel operation of the Push-Relabel algorithm, in that
we search all potential parent arcs in Aφ for the neighbor
with the lowest distance label, and make that node our new
parent.

In order to apply IBFS to the submodular flow problem,
all the basic datastructures still make sense: we have a graph

where the arcs a have residual capacities ca, and a maxi-
mum flow has been found if and only if there is no longer
any augmenting path from s to t.

The main change for the submodular flow problem is that
when we increase flow on an edge (i, j)C , instead of just af-
fecting the residual capacity of that arc and the reverse arc,
we may also change the residual capacities of other arcs
(i′, j′)C for i′, j′ ∈ C. However, the following result en-
sures that this is not a problem.

Lemma 3.2. If (a, b)C was previously saturated, but now
has residual capacity as a result of increasing flow along
(c, d), then (1) either a = d or there was an arc (a, d) ∈ Aφ
and (2) either b = c or there was an arc (c, b) ∈ Aφ.

Corollary 3.3. Increasing flow on an edge never creates a
shortcut between s and i, or from i to t.

The proofs are based on results of [10], and can be found
in the Supplementary Material.

Corollary 3.3 ensures that we never create any new
shorter s-i or i-t paths not contained in S or T . A push
operation may cause some edges to become saturated, but
this is the same problem as in the normal max flow case,
and any orpans so created will be fixed in the adoption step.
Therefore, all invariants of the IBFS algorithm are main-
tained, even in the submodular flow case.

One final property of the IBFS algorithm involves the
use of the “current arc heuristic”, which is a mechanism
for avoiding iterating through all possible potential parents
when performing an adoption step. In the case of Submod-
ular Flows, it is also the case that whenever we create new
residual arcs we maintain all invariants related to this cur-
rent arc heuristic, so the same speedup applies here. How-
ever, as this does not affect the correctness of the algorithm,
and only the runtime, we will defer the proof to the Supple-
mentary Material.

Running time. The asymptotic complexity of the stan-
dard IBFS algorithm is O(n2m). In the submodular-flow
case, we still perform the same number of basic operations.
However, note finding residual capacity of an arc (i, j)C
requires minimizing fC(S) for S separating i and j. If
|C| = k, this can be done in time O(k6) using [26]. How-
ever, for k << n, it will likely be much more efficient to use
theO(2k) naive algorithm of searching through all values of
fC . Overall, we addO(2k) work at each basic step of IBFS,
so if we have m cliques the total runtime is O(n2m2k).

This runtime is better than the augmenting paths algo-
rithm of [2] which takes time O(nm22k). Additionally,
IBFS has been shown to be very fast on typical vision in-
puts, independent of its asymptotic complexity [11].

4. S3SVM: SoS Structured SVMs
In this section, we first review the SVM algorithm and

its associated Quadratic Program (section 4.1). We then de-



cribe a general class of SoS discriminant functions which
can be learned by SVM-struct (section 4.2) and explain this
learning procedure (section 4.3). Finally, we generalize SoS
functions to the multi-label case (section 4.4).

4.1. Structured SVMs

Structured output prediction describes the problem of
learning a function h : X −→ Y where X is the space
of inputs, and Y is the space of (multivariate and struc-
tured) outputs for a given problem. To learn h, we as-
sume that a training sample of input-output pairs S =
((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n is available and drawn
i.i.d. from an unknown distribution. The goal is to find
a function h from some hypothesis space H that has low
prediction error, relative to a loss function ∆(y, ȳ). The
function ∆ quantifies the error associated with predicting ȳ
when y is the correct output value. For example, for image
segmentation, a natural loss function might be the Hamming
distance between the true segmentation and the predicted la-
beling.

The mechanism by which Structural SVMs finds a hy-
pothesis h is to learn a discriminant function f : X×Y → R
over input/output pairs. One derives a prediction for a given
input x by minimizing f over all y ∈ Y .3 We will write
this as hw(x) = argminy∈Y fw(x, y). We assume fw(x, y)

is linear in two quantities w and Ψ: fw(x, y) = wTΨ(x, y)
where w ∈ RN is a parameter vector and Ψ(x, y) is a fea-
ture vector relating input x and output y. Intuitively, one
can think of fw(x, y) as a cost function that measures how
poorly the output y matches the given input x.

Ideally, we would find weights w such that the hypothe-
sis hw always gives correct results on the training set. Stated
another way, for each example xi, the correct prediction yi
should have low discriminant value, while incorrect predic-
tions ȳi with large loss should have high discriminant val-
ues. We write this constraint as a linear inequality in w

wTΨ(xi, ȳi) ≥ wTΨ(xi, yi) + ∆(yi, ȳi) : ∀ȳ ∈ Y. (3)

It is convenient to define δΨi(ȳ) = Ψ(xi, ȳ)−Ψ(xi, yi), so
that the above inequality becomes wT δΨi(ȳi) ≥ ∆(yi, ȳi).

Since it may not be possible to satisfy all these condi-
tions exactly, we also add a slack variable to the constraints
for example i. Intuitively, slack variable ξi represents the
maximum misprediction loss on the ith example. Since we
want to minimize the prediction error, we add an objective
function which penalizes large slack. Finally, we also pe-
nalize ‖w‖2 to discourage overfitting, with a regularization
parameter c to trade off these costs.

3Note that the use of minimization departs from the usual language
of [34, 15] where the hypothesis is argmax fw(x, y). However, because
of the prevalence of cost functions throughout computer vision, we have
replaced f by −f throughout.

Quadratic Program 1. n-SLACK STRUCTURAL SVM

min
w,ξ≥0

1

2
wTw +

c

n

n∑
i=1

ξi

∀i,∀ȳi ∈ Y : wT δΨi(ȳi) ≥ ∆(yi, ȳi)− ξi

4.2. Submodular Feature Encoding

We now apply the Structured SVM (SVM-struct) frame-
work to the problem of learning SoS functions.

For the moment, assume our prediction task is to assign
a binary label for each element of a base set V . We will
cover the multi-label case in section 4.4. Since the labels
are binary, prediction consists of assigning a subset S ⊆ V
for each input (namely the set S of pixels labeled 1).

Our goal is to construct a feature vector Ψ that, when
used with the SVM-struct algorithm of section 4.1, will al-
low us to learn sum-of-submodular energy functions. Let’s
begin with the simplest case of learning a discriminant func-
tion fC,w(S) = wTΨ(S), defined only on a single clique
and which does not depend on the input x.

Intuitively, our parameters w will correspond to the table
of values of the clique function fC , and our feature vector
Ψ will be chosen so that wS = fC(S). We can accomplish
this by letting Ψ and w have 2|C| entries, indexed by subsets
T ⊆ C, and defining ΨT (S) = δT (S) (where δT (S) is 1 if
S = T and 0 otherwise). Note that, as we claimed,

fC,w(S) = wTΨ(S) =
∑
T⊆C

wT δT (S) = wS . (4)

If our parameters wT are allowed to vary over all R2|C|
,

then fC(S) may be an arbitrary function 2C → R, and not
necessarily submodular. However, we can enforce submod-
ularity by adding a number of linear inequalities. Recall
that f is submodular if and only if f(A∪B) + f(A∩B) ≤
f(A) + f(B). Therefore, fC,w is submodular if and only if
the parameters satisfy

wA∪B + wA∩B ≤ wA + wB : ∀A,B ⊆ C (5)

These are just linear constraints in w, so we can add them
as additional constraints to Quadratic Program 1. There are
O(2|C|) of them, but each clique has 2|C| parameters, so
this does not increase the asymptotic size of the QP.

Theorem 4.1. By choosing feature vector ΨT (S) = δT (S)
and adding the linear constraints (5) to Quadratic Pro-
gram 1, the learned discriminant function fw(S) is the max-
imum margin function fC , where fC is allowed to vary over
all possible submodular functions f : 2C → R.

Proof. By adding constraints (5) to the QP, we ensure that
the optimal solution w is defines a submodular fw. Con-
versely, for any submodular function fC , there is a feasible
w defined by wT = fC(T ), so the optimal solution to the
QP must be the maximum-margin such function.



Algorithm 1 : S3SVM via the 1-Slack Formulation.
1: Input: S = ((x1, y1), . . . , (xn, yn)), c, ε
2: W ← ∅
3: repeat
4: Recompute the QP solution with the current con-

straint set:
(w, ξ)← argminw,ξ≥0

1
2wTw + c ξ

s.t. for all (ȳ1, . . . , ȳn) ∈ W :
1
nwT

∑n
i=1 δΨi(ȳi) ≥ 1

n

∑n
i=1 ∆(yi, ȳi)− ξ

s.t. for all C ∈ C, A,B ⊆ C :
wC,A∪B + wC,A∩B ≤ wC,A + wC,B

5: for i=1,...,n do
6: Compute the maximum violated constraint:

ŷi ← argminŷ∈Y{wTΨ(xi, ŷ)−∆(yi, ŷ)}
by using IBFS to minimize fw(xi, ŷ)−∆(yi, ŷ).

7: end for
8: W ←W ∪ {(ŷ1, . . . , ŷn)}
9: until the slack of the max-violated constraint is ≤ ξ + ε.

10: return (w,ξ)

To introduce a dependence on the data x, we can define
Ψdata to be Ψdata

T (S, x) = δT (S)Φ(x) for an arbitrary non-
negative function Φ : X → R≥0.

Corollary 4.2. With feature vector Ψdata and adding linear
constraints (5) to QP 1, the learned discriminant function
is the maximum margin function fC(S)Φ(x), where fC is
allowed to vary over all possible submodular functions.

Proof. Because Φ(x) is nonnegative, constraints (5) ensure
that the discriminant function is again submodular.

Finally, we can learn multiple clique potentials simul-
taneously. If we have a neighborhood structure C with m
cliques, each with a data-dependence ΦC(x), we create a
feature vector Ψsos composed of concatenating the m dif-
ferent features Ψdata

C .

Corollary 4.3. With feature vector Ψsos, and adding a copy
of the constraints (5) for each cliqueC, the learned fw is the
maximum margin f of the form

f(x, S) =
∑
C∈C

fC(S)ΦC(x) (6)

where the fC can vary over all possible submodular func-
tions on the cliques C.

4.3. Solving the quadratic program

The n-slack formulation for SSVMs (QP 1) makes intu-
itive sense, from the point of view of minimizing the mis-
prediction error on the training set. However, in practice it
is better to use the 1-slack reformulation of this QP from
[15]. Compared to n-slack, the 1-slack QP can be solved

several orders of magnitude faster in practice, as well as
having asymptotically better complexity.

The 1-slack formulation is an equivalent QP which re-
places the n slack variables ξi with a single variable ξ. The
loss constraints (3) are replaced with constraints penalizing
the sum of losses across all training examples. We also in-
clude submodular constraints on w.

Quadratic Program 2. 1-SLACK STRUCTURAL SVM

min
w,ξ≥0

1

2
wTw + c ξ s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :

1

n
wT

n∑
i=1

δΨi(ȳi) ≥
1

n

n∑
i=1

∆(yi, ȳi)− ξ

∀C ∈ C, A,B ⊆ C : wC,A∪B + wC,A∩B ≤ wC,A + wC,B
Note that we have a constraint for each tuple

(ȳ1, . . . , ȳn) ∈ Yn, which is an exponential sized set. De-
spite the large set of constraints, we can solve this QP to
any desired precision ε by using the cutting plane algorithm.
This algorithm keeps track of a setW of current constraints,
solves the current QP with regard to those constraints, and
then given a solution (w, ξ), finds the most violated con-
straint and adds it to W . Finding the most violated con-
straint consists of solving for each example xi the problem

ŷi = argmin
ŷ∈Y

fw(x, ŷ)−∆(yi, ŷ). (7)

Since the features Ψ ensure that fw is SoS, then as long as ∆
factors as a sum over the cliques C (for instance, the Ham-
ming loss is such a function), then (7) can be solved with
Submodular IBFS. Note that this also allows us to add arbi-
trary additional features for learning the unary potentials as
well. Pseudocode for the entire S3SVM learning is given in
Algorithm 1.

4.4. Generalization to multi-label prediction

Submodular functions are intrinsically binary functions.
In order to handle the multi-label case, we use expansion
moves [5] to reduce the multi-label optimization problem
to a series of binary subproblems, where each pixel may
either switch to a given label α or keep its current label.
If every binary subproblem of computing the optimal ex-
pansion move is an SoS problem, we will call the original
multi-label energy function an SoS expansion energy.

Let L be our label set, with output space Y = LV . Our
learned function will have the form f(y) =

∑
C∈C fC(yC)

where fC : LC → R. For a clique C and label `, define
C` = {i | yi = `}, i.e., the subset of C taking label `.

Theorem 4.4. If all the clique functions are of the form

fC(yC) =
∑
`∈L

g`(C`) (8)

where each g` is submodular, then any expansion move for
the multi-label energy function f will be SoS.



Figure 1. Example images from the binary segmentation results.
From left to right, the columns are (a) the original image (b) the
noisy input (c) results from Generic Cuts [2] (d) our results.

Proof. Fix a current labeling y, and let B(S) be the energy
when the set S switches to label α. We can write B(S) in
terms of the clique functions and sets C` as

B(S) =
∑
C∈C

(
gα(Cα ∪ S) +

∑
` 6=α

g`(C` \ S)

)
(9)

We use a fact from the theory of submodular functions: if
f(S) is submodular, then for any fixed T both f(T ∪S) and
f(T \S) are also submodular. Therefore, B(S) is SoS.

Theorem 4.4 characterizes a large class of SoS expan-
sion energies. These functions generalize commonly used
multi-label clique functions, including the Pn Potts model
[16]. The Pn model pays cost λi when all pixels are equal
to label i, and λmax otherwise. We can write this as an SoS
expansion energy by letting g`(S) = λi − λmax if S = C
and otherwise 0. Then,

∑
` g`(S) is equal to the Pn Potts

model, up to an additive constant. Generalizations such as
the robust Pn model [17] can be encoded in a similar fash-
ion. Finally, in order to learn these functions, we let Ψ be
composed of copies of Ψdata — one for each g`, and add
corresponding copies of the constraints (5).

As a final note: even though the individual expansion
moves can be computed optimally, α-expansion still may
not find the global optimum for the multi-labeled energy.
However, in practice α-expansion finds good local optima,
and has been used for inference in Structural SVM with
good results, as in [20, 30]. [9] gives a class of submod-
ular multilabel functions with exact inference (but which is
smaller than the class just proposed). Examining this trade-
off is the subject of future work.

5. Experimental Results
In order to evaluate our algorithms, we focused on binary

denoising and interactive segmentation. For binary denois-
ing, Generic Cuts [2] provides the most natural comparison
since it is a state-of-the-art optimization method that uses
SoS priors. For interactive segmentation the natural com-
parison is GrabCut [28], where we used the OpenCV im-
plementation. We ran our general S3SVM method, which
can learn an arbitrary SoS function, and also considered the
special case of only using pairwise priors. For both the de-
noising and segmentation applications, we significantly im-
prove on the accuracy of the hand-tuned energy functions.

5.1. Binary denoising

Our binary denoising dataset consists of a set of 20 black
and white images. Each image is 400 × 200 and either
a set of geometric lines, or a hand-drawn sketch (see Fig-
ure 1). We were unable to obtain the original data used by
[2], so we created our own similar data by adding indepen-
dent Gaussian noise at each pixel.

For denoising, the hand-tuned Generic Cuts algorithm
of [2] posed a simple MRF, with unary pixels equal to the
absolute valued distance from the noisy input, and an SoS
prior, where each 2 × 2 clique penalizes the square-root of
the number of edges with different labeled endpoints within
that clique. There is a single parameter λ, which is the
tradeoff between the unary energy and the smoothness term.
The neighborhood structure C consists of all 2 × 2 patches
of the image.

Our learned prior includes the same unary terms and
clique structure, but instead of the square-root smooth-
ness prior, we learn a clique function g to get an MRF
ESVM(y) =

∑
i |yi − xi| +

∑
C∈C g(yC). Note that each

clique has the same energy as every other, so this is anal-
ogous to a graph cuts prior where each pairwise edge has
the same attractive potential. Our energy function has 16
total parameters (one for each possible value of g, which is
defined on 2× 2 patches).

We randomly divided the 20 input images into 10 train-
ing images and 10 test images. The loss function was the
Hamming distance between the correct, un-noisy image and
the predicted image. To hand tune the value λ, we picked
the value which gave the minimum pixel-wise error on the
training set. S3SVM training took only 16 minutes.

Numerically, S3SVM performed signficantly better than
the hand-tuned method, with an average pixel-wise error
of only 4.9% on the training set, compared to 28.6% for
Generic Cuts. The time needed to do inference (using our
Submodular IBFS algorithm) was similar for both methods:
0.82 sec/image for S3SVM vs. 0.76 sec/image for Generic
Cuts. Visually, the S3SVM images are significantly cleaner
looking, as shown in Figure 1. Note that this experiment is
not intended to be a competitive method for binary denois-
ing, but simply to provide a direct comparison with [2].

5.2. Interactive segmentation

The input to interactive segmentation is a color image,
together with a set of sparse foreground/background anno-
tations provided by the user. See Figure 2 for examples.
From the small set of labeled foreground and background
pixels, the prediction task is to recover the ground-truth seg-
mentation for the whole image.

Our baseline comparison is the Grabcut algorithm,
which solves a pairwise CRF. The unary terms of the CRF
are obtained by fitting a Gaussian Mixture Model to the his-
tograms of pixels labeled as being definitely foreground or
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Figure 2. Example images from binary segmentation results. Input with user annotations are shown at top, with results below.

background. The pairwise terms are a standard contrast-
sensitive Potts potential, where the cost of pixels i and j
taking different labels is equal to λ · exp(−β|xi − xj |) for
some hand-coded parameters β, λ. Our primary comparison
is against the OpenCV implementation of Grabcut, avail-
able at www.opencv.org.

As a special case, our algorithm can be applied to
pairwise-submodular energy functions, for which it solves
the same optimization problem as in Associative Markov
Networks (AMN’s) [31, 1]. Automatically learning param-
eters allows us to add a large number of learned unary fea-
tures to the CRF.

As a result, in addition to the smoothness parameter λ,
we also learn the relative weights of approximately 400 fea-
tures describing the color values near a pixel (by clustering
using k-means the vector of 9 colors in a 3×3 patch at each
pixel), and relative distances to the nearest labeled fore-
ground/background pixel (also clustered using k-means).
We refer to the entire method as S3SVM-AMN.

Our general S3SVM method can incorporate higher-
order priors instead of just pairwise ones. In addition to
the unary features used in S3SVM-AMN, we add a sum-
of-submodular higher-order CRF. Each 2 × 2 patch in the
image has a learned submodular clique function. To ob-
tain the benefits of the contrast-sensitive pairwise potentials
for the higher-order case, we cluster the x and y gradient
responses of each patch into 50 clusters, and learn one sub-
modular potential for each cluster. Note that S3SVM auto-

matically allows learning the entire energy function, includ-
ing the clique potentials and unary potentials (which come
from the data) simultaneously.

We use a standard interactive segmentation dataset from
[12] of 151 images with annotations, together with pixel-
level segmentations provided as ground truth. These im-
ages were randomly sorted into training, validation and test-
ing sets, of size 75, 38 and 38 respectively. We trained
both S3SVM-AMN and S3SVM on the training set for var-
ious values of the regularization parameter c, and picked the
value c which gave the best accuracy on the validation set,
and report the results of that value c on the test set.

The overall performance is shown in the table below.
Training time is measured in seconds, and testing time in
seconds per image. Our implementation, which used the
submodular flow algorithm based on IBFS discussed in sec-
tion 3.2, is available, open sourced, at http://www.cs.
cornell.edu/˜afix/.

Algorithm Average error Training Testing
Grabcut 10.6± 1.4% n/a 1.44
S3SVM-AMN 7.5± 0.5% 29000 0.99
S3SVM 7.3± 0.5% 92000 1.67

Learning and validation was performed 5 times with in-
dependently sampled training sets. The averages and stan-
dard deviations shown above are from these 5 samples.

While our focus is on binary labeling problems, we have
conducted some preliminary experiments with the multi-

www.opencv.org
http://www.cs.cornell.edu/~afix/
http://www.cs.cornell.edu/~afix/


Figure 3. A multi-label segmentation result, on data from [13].
The purple label represents vegetation, red is rhino/hippo and blue
is ground. There are 7 labels in the input problem, though only 3
are present in the output we obtain on this particular image.

label version of our method described in section 4.4. A
sample result is shown in figure 3, using an image taken
the Corel dataset used in [13].
Acknowledgements: This research has been supported by
National Science Foundation grants IIS-0803705 and IIS-
1161282.
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