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Abstract

Sparsity is a widely used and theoretically well understood notion that has allowed in-

ference to be statistically and computationally possible in the high-dimensional setting.

Sparse Principal Component Analysis (SPCA) and Sparse Linear Regression (SLR) are

two problems that have a wide range of applications and have attracted a tremendous amount

of attention in the last two decades as canonical examples of statistical problems in high

dimension. A variety of algorithms have been proposed for both SPCA and SLR, but their

literature has been disjoint for the most part. We have a fairly good understanding of

conditions and regimes under which these algorithms succeed. But is there be a deeper

connection between computational structure of SPCA and SLR?

In this paper we show how to efficiently transform a blackbox solver for SLR into an

algorithm for SPCA. Assuming the SLR solver satisfies prediction error guarantees achieved

by existing efficient algorithms such as those based on the Lasso, we show that the SPCA

algorithm derived from it achieves state of the art performance, matching guarantees for

testing and for support recovery under the single spiked covariance model as obtained by
the current best polynomial-time algorithms. Our reduction not only highlights the inherent

similarity between the two problems, but also, from a practical standpoint, it allows one

to obtain a collection of algorithms for SPCA directly from known algorithms for SLR.

Experiments on simulated data show that these algorithms perform well.

Thesis Supervisor: Guy Bresler

Title: Assistant Professor
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Chapter 1

Introduction

In modern datasets, we often work in the so called high-dimensional regime, where the dimen-

sionality of the data may be significantly larger than the number of samples. In such settings,
classical statistical tools break down, and we need additional assumptions on the data such as

sparsity to make the problem statistically or computationally tractable.

Linear regression and principal components analysis have both been widely studied as fun-

damental problems in supervised learning and unsupervised learning, respectively. In the past

decade, their sparse variants have been widely studied in the high-dimensional setting. Numer-

ous techniques and algorithms have been developed for both problems, and conditions necessary

or sufficient for the success of these algorithms are well understood.

Beyond the fact that sparsity is a common assumption used in both, could there be a deeper

connection between the two problems? Does the difficulty of the two problems arise from the

same structural reason? Can one use a blackbox solver for one to solve the other? This thesis

makes a step forward in answering the above questions.

1.1 High-dimensional statistics

In- classical statistics, we focus on the asymptotic regime where the number of samples n tend to

infinity while other parameters are fixed. Classical estimators such as the maximum likelihood

estimator are consistent; that is, the sample estimate of a parameter converges to the true

population value as we acquire more samples.

In many modern applications, however, the number of samples we have access to is far less

than the dimensionality of the data. Hence, it is often unreasonable to assume we have a lot

more samples than the number of dimensions. This motivates the study of statistical problems

in the high-dimensional setting.

Working in high-dimensions is both a curse and a blessing ([Wai10]). On one hand, exponen-

tial blowup in sample complexity or runtime is inevitable in certain cases (the so called "curse

of dimensionality"). But on the other, phenomena such as concentration of measure working for
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us enable inference under appropriate assumptions.

1.1.1 Sparsity

Due to the curse of dimensionality, problems in high-dimensional settings are intractable without

additional assumptions. Often we impose a low-dimensional structure on our models. This not

only allows inference to be statistically or computationally possible, but also is guided by our

experience that high-dimensional data is often well explained by a much lower dimensional

structure.

The need for low dimensional models is further elaborated by rigorous geometric intuition.

The survey by [Verl5] gives a beautiful geometric perspective for estimation of high-dimensional

signals constrained to a feasible region, unifying a number of results in this area. A general class

of efficient convex programs succeed at recovery when the number of samples is on the order of the

"effective dimension" of the lower-dimensional feasible region. This low-dimensional structure

may be some form of sparsity, or low rank for matrices, for instance.

Sparsity is a simple and natural assumption for many problems, and has been extensively

analyzed in theory and applied in practice. Sparse models have low ambient dimension, in

the following senses. The set of sparse vectors, i.e., those with few non-zero entries, has low

effective dimension as measured by the Gaussian mean width. The concept class of sparse linear

classifiers also has low VC dimension ([Ney06]). As the ambient dimensionality of these models

is low, it plausible that we can recover the parameters of the models using much fewer number

of samples. Aside from the mathematical usefulness of such an assumption, real-world data are

often sparse in an appropriate basis. For instance, natural images are known be approximately

sparse in alternate bases such as wavelet or Fourier, and this fact is used by several compression

schemes. In summary, sparse models have proven to be powerful both in theory and practice.

See [EK12] or similar for a more extensive history.

We may view the success of sparse models in the light of Occam's razor: that among equiva-

lent explanations, the simplest is best. In the case of linear regression, it is reasonable to expect

that only a few of the covariates affect the response variable.

1.1.2 Statistical vs. computational tradeoffs

Despite the flurry of theoretical progress in high-dimensional estimation tasks, our understand-

ing is still lacking in some aspects. For some problems, there still remains a gap between

statistically optimal algorithms and known efficient algorithms; the former is often based on a

brute-force search over model parameters, while the latter utilizes various convex relaxations

and greedy heuristics. In other cases, computationally efficient algorithms require certain re-

strictive assumptions on the input, and the only known proof techniques rely crucially on those

assumptions. Without those assumptions, a much higher signal strength is required in order to

do inference-as far as we know. Is there a statistical price to pay for computational efficiency?

10



In recent years, new evidence for separation between statistical and computational thresholds

for specific problems such as Sparse Principal Component Analysis (SPCA) and Submatrix

Detection has emerged. But this raises further questions; do these gaps in different sparse

problems indicate a common structure? Are different algorithms for these problems actually

that different? At a very high level, the hardness on these different sparse problems does seem

to arise from the same basic structural reason: the minimax optimal estimators for Sparse

Linear Regression (SLR), SPCA, and Submatrix Detection all involve a brute force search over

the family of sparse parameters (which is an exponentially large set). One of our goals is to

formalize the above intuition.

Average-case hardness This evidence has relied on average-case complexity assumptions.

Most known results in complexity work with worst case inputs. This is not the appropriate

setting to study statistical problems as they involve data which is generated from processes that

are inherently random.

The work on reducing from average-case hard problems to statistical problems was pioneered

by [BR13a}, and inspired the work in this thesis. They assume the hardness of finding small

planted cliques to show that any randomized polynomial time tests must fail if the signal 6 is
below a certain threshold; this is a constant factor within the threshold at which their SDP

relaxation succeeds. Soon after, [MW15] similarly reduced from planted clique showed that

submatrix detection is statistically possible but computationally infeasible in a certain regime

of parameters. Recently, average-case certification of Restricted Isometery Property, a property

of high interest in compressed sensing and statistical learning, was shown to computationally

hard based on the hardness of detecting dense subgraphs ([WBP16]), a slightly milder variant

of the planted clique hypothesis used in previous works.

The work in thesis was initiated by the goal to show that SLR and SPCA are equivalently

hard via a blackbox reduction. While such is not known yet, we make partial progress by

giving a blackbox reduction that works in the efficient regime: given a SPCA instance in the

computationally tractable regimel, we solve it using blackbox accesses to an SLR solver.

1.2 Our contributions

We highlight some of our contributions below:

* We give a general and efficient procedure for transforming an SLR blackbox with pre-

diction error guarantees into algorithms for hypothesis testing and support recovery for

SPCA under the spiked covariance model. Most known sparse linear regression and sparse

recovery algorithms can be used as this blackbox. In experiments, we demonstrate that

'In that sense that we already know other direct algorithms that solve SPCA in this regime, and we have

evidence that the threshold is tight.
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using popular existing SLR algorithms such as Lasso [Tib96] and FoBa [Zha09I for the

"blackbox" results in good performance.

" For hypothesis testing, we match state of the art provable guarantee for computationally

efficient algorithms; our algorithm successfully distinguishes between isotropic and spiked

Gaussian distributions as soon as the signal strength is greater than 6 > 2klog d This

matches the phase transition of diagonal thresholding (DT) [JL09] and Minimal Dual

Perturbation (MDP) [BR13b] up to constant factors.

" For support recovery: for general p and n, when each non-zero entry of u is at least Q(1/ Vk)

(a standard assumption in the literature), our algorithm succeeds with high probability

for signal strength 9 ,> k
2 log . In the scaling limit d/n -* ce as d,n -+ oo, the recent

covariance thresholding algorithm [DM14], theoretically succeeds at a signal strength that

is an order of V/log d smaller. However, our experimental results indicate that with an

appropriate choice of blackbox, our Q algorithm outperforms covariance thresholding as

well as diagonal thresholding.

" We also theoretically and empirically illustrate that our SPCA algorithm is robust to

rescaling data, for instance by using a Pearson correlation matrix instead of a covariance

matrix. 2

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we give background on the history

and existing literature of SPCA and SLR, with more focus on SPCA. In Chapter 3, we define

clear formulations of both problems that will be used in the rest of the thesis. In Chapter 4,

we show the reduction and its analysis. In Chapter 5, we present empirical evaluation of our

algorithms. In Chapter 6, we conclude with some future directions.

2 We remark that the idea of seeing if a SPCA algorithm works on the correlation matrix was originally found

in [VCLR13].
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Chapter 2

Background

We review the historical development and existing literature of Sparse Principal Component

Analysis (SPCA) and Sparse Linear Regression (SLR). 1

2.1 Sparse Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique for dimensionality reduction

and compression. PCA is used to project vector data onto a lower dimensional subspace while

minimizing reconstruction error in a least squares sense. This subspace is spanned by a few

orthogonal directions of maximum variance, called principal components, which are linear com-

binations of the original variables. The weight of original variables in a principal component are

referred to as loadings. Principal components also have the advantage that different components

are uncorrelated.

The top principal components correspond to top eigenvectors of the covariance matrix, so

they can be estimated by computing the eigenvalue (singular value) decomposition of the sample

covariance (data) matrix.

More formally, we are given a data matrix X E R'>d where d is the input dimension and n

is the number of samples. Assume that the data has been appropriately centered to have zero

mean. Let E denote the population covariance matrix, and 5 its sample counterpart. For now,

let us focus on just the first principal component. The goal is to solve the following optimization

problem:

argmax uT EU
11U112=1

If 2 is close to E in spectral norm 2 , then we expect its largest eigenvector to be close to that

'While the background on SPCA is more extensive than necessary to understand the context of our reduction,
we aim to provide a short comprehensive summary as no satisfactory one was found in the literature.

2 Spectral norm of a matrix is its largest singular value.
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of E if the corresponding eigenvalue is unique (and we assume so in rest of this subsection). In

the classical setting where the number of samples n tends to infinity for fixed d, the consistency

of estimator Z and the continuity of the largest eigenvalue as a function of the matrix entries 3

imply that we can recover the top principal component.

However, in the high-dimensional setting, when d can be (much) larger than n, such methods

lead to inconsistent estimates. This is true even when d and n are of the same order. Consider

the case when the population covariance matrix is the identity, so its top eigenvalue is just 1.

We know that if p/n -+ a > 0 ( [Gem8O]),

Amax(E) * (1+ V) 2 > I

It follows that if the maximum eigenvalue of the population covariance matrix is between 1 and

(1 + ,/-)2, the top eigenvector of the sample covariance matrix is not a consistent estimate of

the first principal component. Moreover, when d/n -+ oc, we have Amax(2) -* oo, so the above

estimate is generally unreliable in the high-dimensional setting.

Sparse PCA As seen above, in the high-dimensional setting one cannot hope to do PCA

without additional assumptions. Aside from statistical limitations, principal components that

are linear combinations of all of the original variables are also hard to interpret. This motivates

the addition of a sparsity constraint, limiting the number of nonzero loadings in a principal

component. As the original variables usually have some physical meaning (ex. the expression

levels of different genes), a principal component with a few nonzero loadings can be more inter-

pretable. Notice that there is a tradeoff between statistical fidelity and interpretability. While

having fewer nonzero entries aids better physical interpretation, it comes at the price of lower

explained variance.

Before the notion of sparse PCA was formalized, ad-hoc methods were used to post-process

the ordinary principal components, for instance by simple thresholding of ordinary principal

components. But this can be misleading as just looking at the magnitude of the loadings does

not take into account of variance or correlation structure between variables, and in general

truncating may not yield the best approximation to the original principal component ([CJ95]).

2.1.1 Existing algorithms for sparse PCA

Similar notions of sparse PCA were initially introduced in various works in order to remedy the

issues with the ordinary PCA in the high dimensional setting or to achieve sparsity as a goal in

itself.

3This is because roots of a polynomial are continuous in its coefficients.
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More formally, one formulation of sparse PCA is the following:

argmax uT U (2.1)
IU12=1,HUIlO<k

where k is the sparsity or number of non-zeros. The value of the objective above is sometimes

referred to as the k-sparse eigenvalue. It is not hard to see that the above problem is N P-hard by

a trivial reduction to CLIQUE, which suggests that there is no efficient algorithm for worst-case

inputs. This means one has to relax the to constraint to an t, constraint, or impose certain

additional distributional assumptions on the data in order to get guarantees. Below we highlight

some of the earlier approaches to this problem.

ti penalty Some of the earliest works used different forms of Li penalty to heuristically tradeoff

between sparsity and explained variance. [JTU03] proposed SCoTLASS (Simplified Component

Technique LASSO), which imposes an Li penalty on (2.1) to recover sparse loadings; they opti-

mize the objective using a variant of projected gradient descent, which is computationally costly,

and is further compounded by the need to optimize over the penalty parameter to control spar-

sity. [ZHT06] reformulated PCA as a particular regression and use the elastic net (combination

of F2 and fi penalty) to induce sparsity, and an algorithm based on alternating minimization

was given for the nonconvex optimization problem but no provable guarantees were provided.

[MWA05] gave a greedy algorithm with a forward and backward pass to maximize the k-sparse

eigenvalue objective, as well as an exact branch-and-bound algorithm using eigenvalue bounds

to guide the search.

Diagonal thresholding [JL09] uses a simple procedure called diagonal thresholding (DT) to

select a subset of variables with the largest variance, and then runs ordinary PCA on the reduced

set of variables. Somewhat surprisingly, this simple algorithm matches the best guarantees for

hypothesis testing (and is nearly optimal for support recovery) under the spiked covariance

model, as we discuss in more detail in the next section.

SDP relaxations Another way to relax the hard sparsity constraint is to formulate an SDP

relaxation to (2.1). [dEGJL07] first introduced a natural SDP relaxation for the problem

(DSPCA), and since then this SDP has been used and analyzed in numerous settings. The

canonical SDP relaxation replaces uuT with any positive semi-definite matrix and drops the

rank-1 constraint, and also replaces the to constraint with an L, constraint.

Power methods The power method is a popular algorithm for finding the top eigenvector of

a given matrix A that simply iteratively applies matrix A to the current estimate. Adaptations

of this method to SPCA have been studied.

15



The Truncated Power method (TPower) of [YZ13] performs very well in practice; this ex-

tremely simple iterative method can recover the top eigenvector (which is assumed to be sparse)

in f2 norm, but this requires starting with a sufficiently close initial direction.

The Generalized Power method (GPower) of [JNRS10] applies a gradient based iterative pro-

cedure for maximizing convex functions on compact set to reformulations of the SPCA objective

2.1 with fi penalty, but lack guarantees on quality of the solution as the gradient procedure can

be only shown to reach a stationary point (not even a local maximum) in general.

2.1.2 Spiked covariance model

These earlier works did not give completely satisfactory provable guarantees on the quality of

the solution found. As the most general SPCA problem is NP-hard, additional assumptions are

needed in order to derive better guarantees. One popular and successfully analyzed distributional

setting has been the spiked covariance model. We focus on the single spike model due to [JohOl].

In the spiked covariance model for r spikes, X E Rd is generated by the formula:

X =VDUT + Z

where V is n x r random effects matrix with i.i.d. M(0, 1) entries, D = diag(Al 2  ,'/ 2 ) with

A 1 > ... Ar > 0, U is d x r orthonormal and Z has i.i.d. M(0, o.2) entries independent of

V. Equivalently, X has rows independently drawn from ./(0, E), where E = UAUT + a.2 Id and

A = diag(A1, ... , Ar).

In this thesis, we focus on the single spike case, where we just have U = u. We introduce

a signal strength parameter 9, defined as 0 = A 1/a. For the discussion below, we comment

that some works treat signal strength 9 as a variable parameter and compare against a fixed

threshold, while others fix 0 to be a constant and analyze the required number of samples n as

a function of dimension d and sparsity k.

Below we review state of the art guarantees for two different goals.

Support recovery The goal of support recovery is to find the support S of the spike u. Notice

that if we exactly recover the support of S, then we can recover u by finding the top eigenvector of

the restricted covariance matrix Es,s because this puts us back in the low-dimensional or classical

regime. In general, a lower bound on the entries of u is needed in order to guarantee successful

recovery (see [FRG09, WaiW7] for related lower bounds for sparse recovery). Under the spiked

covariance model, for a subcase when the spike is uniform in all k coordinates, [AW09] analyzed

both diagonal thresholding and SDP for support recovery. They showed that the SDP requires an

order of k fewer samples when the SDP optimal solution is rank one. However, [KNV13] showed

that the rank one condition does not happen in general, particularly in the regime approaching

the information theoretic limit (Vn. < k < ' ). This is consistent with computational lower
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bounds from [BR13a] (k > fd), but a small gap remiains (diagonal thresholding, SDP's succeed

only up to k < gn/log d). The state of the art for support recovery that closes the above gap

is the covariance thresholding algorithm, first suggested by [KNV13] and analyzed by [DM14],

that succeeds in the regime Vn/log d < k < Vn, although the theoretical guarantee is limited

to the regime when d/n -+ a due to relying on techniques from random matrix theory.

Hypothesis testing Some works [BR13b, AW09, dBEG14] have focused on the problem of

detection. Here one only wants to distinguish between u = 0 and 1uI1|2 = 1 (with u still k-sparse).

In this case, [BR13b] observed that it suffices to work with the much simpler dual of the standard

SDP, called Minimal Dual Perturbation (MDP). In the dual problem, the goal is to perturb the

sample covariance matrix to minimize the max eigenvalue subject to a penalty proportional to

the entries of the perturbation and the sparsity level k. Diagonal thresholding (DT) and MDP

work up to the same signal threshold 0 as for support recovery, but MDP seems to outperform

DT on simulated data [BR13b]. Note that MDP works at the same signal threshold as the

standard SDP relaxation for SPCA.

[dBEG141 analyze a statistic based on an SDP relaxation and its approximation ratio to the

optimal statistic. In the regime where k, n are proportional to d, their statistic suceeds at a

signal threshold for 0 that is independent of d, unlike the MDP. However, their statistic is quite

slow to compute; runtime is at least a high order polynomial in d.

2.1.3 Beyond the single spike covariance model

Multiple spikes While this thesis focuses on the single spike case, in practice it is obviously

desirable to obtain multiple principal components. For finding more than one principal compo-

nent, a popular strategy is to simply iterate the algorithm for finding one component, while using

deflating techniques in between iterations to remove the contribution of existing components.

The performance of such a procedure depends on the deflation technique used; see [Mac09J for

more details.

Subspace recovery A contrasting strategy is to estimate the entire principal subspace spanned

by the first r components at once. Settings vary in whether they allow supports to be disjoint or

identical across different components. More recent work such as [Mal 3] analyze minimax bounds

for this problem. [CMW13] analyzed optimal rates for estimating the principal subspace along

with an efficient adaptive procedure that works for a more restrictive set of parameters.

Alternative guarantees Aside from the spiked covariance model, different works have man-

aged to give efficient algorithms by parameterizing the ambient dimension of the problem in

different ways.
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In [APKD15], they instead focus on finding sparse components with disjoint supports that

jointly capture the maximum variance. Through a clever reformulation of the objective, they

reduce the problem to multiple instances of bipartite maximum weight matching, and the algo-

rithm's complexity is polynomial in the ambient dimension of the input data, though exponential

in rank.

In [PDK13], they give an algorithm that guarantees good approximation as long the spectral

profile of the covariance matrix has sufficient decay. Their algorithm first obtains E, a rank-r

approximation of E, then uses Er to obtain 0(nr) candidates supports (which is potentially

much fewer than the naive enumeration of O(nk)).

[VCLR.13] generalize the DSPCA approach of [dEGJL07] to recovering sparse principal sub-

spaces by formulating an SDP with a Fantope constraint, and also give an efficient alternating

direction method of multipliers (ADMM) algorithm to solve the SDP. Their subspace recovery

guarantee is in terms of the spectral profile of the population covariance matrix. To the best

of our knowledge, their work was also the first to point out that diagonal thresholding trivially

fails after rescaling all variables to have equal variance, indirectly hinting at the limitation of

the spiked covariance model.

Probabilistic approaches Some line of work has focused on probabilistic formulations of

(sparse) PCA. PCA can be formulated as a maximum likelihood solution to a latent variable

model ([TB99]). [SBO8] gave an Expectation-Maximization procedure for finding principal com-

ponents, where they add el or non-negativity constraints in the M-step to enforce sparsity or

non-negativity. Because EM only guarantees local optima, the performance of their algorithm

depends on good initialization. [GD09] provide a more complete Bayesian solution to sparse

probabilistic PCA, using different priors to induce sparsity on the coefficients of the latent

variables.

2.2 Sparse Linear Regression

Linear regression is one of the most fundamental statistical tools and a canonical problem in

supervised learning. In linear regression, we observe a response vector y E R' and a design

matrix X E R"xd that are linked by the linear model y = Xfl* + w. The vector w E R' is some

form of observation noise, and our goal is to recover 3* given noisy observations y. We focus

on the standard Gaussian model, where the entries of w are i.i.d. AP(O, oa2 ). We also work with

deterministic design; while the matrices X we consider arise from a (random) correlated Gaussian

design (as analyzed in [WaiO7], [Wai09]), it will make no difference to assume the matrices are

deterministic (by conditioning). Most of the relevant results on sparse linear regression pertain

to deterministic design.

Analogous to the setting for PCA, linear regression in the high-dimensional setting is mean-

ingless without further constraints. In general, when n < d, the system is under-determined and
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there is a whole subspace of solutions minimizing reconstruction error.

In sparse linear regression, we additionally assume that #6* is sparse, or has only a small

number, k < d, of non-zero entries. This makes the problem well posed in the high dimensional

setting, though computationally more challenging. Beyond mathematical necessity, sparsity has

been found to be a very suitable assumption, as often real world signals are suitable in an

appropriate basis; that is, the intrinsic dimensionality of the data is often much lower than the

dimensionality of the original dataset.

Commonly used performance measures for SLR are tailored to prediction error, support

recovery (recovering support of /*), or parameter estimation (estimating 0* under some norm).

We focus on prediction error, defined as |IXO* - X/3II, and analyzed over random realizations

of the noise.

The to estimator, which minimizes the reconstruction error fly - X 12 over all k-sparse

regression vectors, achieves prediction error bound of form ([BTWO7a], [RWY11]):

1 _2k log d
n n

The runtime of this estimator is Q(nk), which is both theoretically and practically as soon as k

is larger than a constant.

Efficient methods Various efficient methods have been proposed to circumvent the com-

putational intractability of the above estimator: basis pursuit, Lasso[Tib96J, and the Dantzig

selector [CT07] are some of initial approaches. Greedy pursuit methods such as OMP [MZ93],

IHT[BD09], CoSaMP[NT09, and FoBa[Zha09] among others offer more efficient alternatives.

4 Many of the optimization-based approaches relax the to penalty to some form of fi penalty

or an equivalent constraint. These algorithms achieve the same prediction error guarantee as

to up to a constant, but under the assumption that X satisfies certain properties, such as re-

stricted eigenvalue ([BRT09]), compatibility ([vdG07]), restricted isometry property ([CT051),

and (in)coherence ([BTW07b]). In this work, we focus on the restricted eigenvalue (see Defini-

tion 3.3 for a formal definition). We remark that restricted eigenvalue is among the weakest, and

is only slightly stronger than the compatibility condition. Moreover, [ZWJ14] give complexity-

theoretic evidence for the necessity of dependence on the RE constant for certain worst case

instances of the design matrix. See [VDGB+09] for implications between various conditions. In

the next subsection, we give more intuition for some of these conditions.

Slow rate Without such conditions on X, the best known guarantees provably obtain only a

1//n decay rather than a 1/n decay in prediction error as number of samples increase. [ZWJ15]

give some evidence that this gap may be unavoidable by showing that the family of M-estimators

4 Note that some of these algorithms were presented for compressed sensing; nonetheless, their guarantees can

be converted appropriately.
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based on minimizing the sum of squared loss and a coordinate-wise decomposable regularizer

cannot achieve a rate better than 1/ 6[.

Optimal estimators The SLR estimators we consider are efficiently computable. Another

line of work considers arbitrary estimators that are not necessarily efficiently computable. These

include BIC [BTW07a], Exponential Screening [RTI1], and Q-aggregation [DRXZ14]. Such esti-

mators achieve strong guarantees regarding minimax optimality in the form of oracle inequalities

on MSE.

2.2.1 Properties of design matrix

We give some intuition for why certain properties of the design matrix are desirable and natural

for signal recovery (though not necessarily in the sense of minimizing prediction error).

One commonly used property is incoherence and (its generalization) restricted isometry prop-

erty (RIP). The intuition behind incoherence is that we want the error due to under-sampling-'

to look roughly like noise. To put it another way, incoherence measures the tendency of lin-

ear reconstruction to leak energy from the true underlying source to other sources; we want to

spread this out as uniformly as possible over all sources.

While incoherence just looks at pairs of vectors, RIP generalizes by looking at subsets of k

vectors. Though it is hopeless for a n x d matrix to be well-conditioned' for n < d, RIP of k

means that we only need the matrix to be well-conditioned if we look at any submatrix spanned

by k columns.

It turns out that a much weaker condition such as restricted eigenvalue suffices for the

guarantee of certain SLR algorithms. RE says that the design matrix has bounded eigenvalue in

a restricted set of directions. In fact, even more generally, this property corresponds to restricted

strong convexity for real-valued functions. Strong convexity here means that the Hessian of the

function we are optimizing is strictly positive; this implies the function being sufficiently well-

conditioned. Restricted means we only need strong convexity to hold in certain restricted set of

directions; usually what suffices is the cone of directions spanned by "roughly" sparse 7 vectors.

In the case of SLR, strong convexity of the f2 reconstruction error is exactly equivalent to the

design matrix having a restricted eigenvalue.

It turns out RSC together with a property called decomposability of the regularizer is sufficient

to imply very general results on the performance of certain class of M-estimators for high-

dimensional statistical tasks with a low-dimensional structure. See [NYWR09] for a lengthier

discussion and general results along this line.

5This expression is from compressed sensing, but basically means the same high-dimensional setting we have

been discussing when the linear system is under-determined.
6Generally, a function is said to be well-conditioned if output value varies less relative to the change in input

value; condition number is also the ratio or largest to smallest singular value.
7 1n the sense that f -weight outside a sparse support is not much larger than the fi-weight on the support
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2.2.2 Connections to Compressed Sensing

SLR is very closely related to compressed sensing (CS), which studies the recovery of sig-

nals based on a small number of measurements when the signal is known to be (approxi-

mately) sparse in some suitable basis. CS grew out of a sequence of seminal papers (the

core theory was developed in [CRT06b, CRT06a, :Don061, but some its ideas were hinted in

[FB96, BF96, VB98, VMB02, CDS01]), and since then its ideas and related techniques have

been taken up by researchers in various communities spanning statistics, machine learning, the-

oretical computer science, and information theory. The main difference in the settings of SLR

and CS is that in SLR the design matrix is a given, with less control on the distributional or

independence properties, while in CS the goal is to design a measurement matrix with similar

yet usually stronger properties, often with its design influenced by physical constraints such as

those arising from magnetic resonance imaging (MRI). Recovery objective also varies depend-

ing on the community; in signal processing, the goal is often to recover the signal up to some

error: in SLR, prediction error and variable selection, which are weaker and (usually) stronger,
respectively, are also popular.

2.3 Prior work

Despite the similarity of SPCA and SLR, the literature for each problem has been mostly disjoint.

Some prior work has also drawn connections between SPCA and SLR, though in ways different

from the work in this thesis.

Regression based approaches Though some previous works ([ZHT06]) have used specific

algorithms for SLR such as Lasso as a subroutine, to the best of our knowledge our work is the

first to give a general framework that uses SLR in a blackbox fashion, while matching state of

the art theoretical guarantees.

A similar regression-based approach has been used in [MB06 as applied to a restricted class

of graphical models. The goal there is to recover the neighborhood of each node in a graphical

model; they do is by regressing the random variable corresponding each node on the observations

from the rest of the graph. While our regression setup is similar, their statistic is different and

their analysis depends directly on the particulars of Lasso. Further, their algorithm requires

extraneous conditions on the data. In particular, their Assumption 5 on minimum partial

correlation requires 02 > k, compared to 02 > Vlo in our work.

[CMW13] also uses reduction to linear regression for their sparse subspace estimation, but is

different from our approach in several ways: First, their algorithm depends crucially on a good

initialization done by a diagonal thresholding-like pre-processing step, whereas our algorithm

does not. This further implies that under rescaling of data8 , their initialization fails. Second,
8 See Section 4.4.3 for more discussion on rescaling.
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their framework uses regression for the specific case of orthogonal design, whereas our design

matrix can be more general as long as it satisfies a condition similar to the restricted eigenvalue

condition. On the other hand, their setup allows for more general eq-based sparsity as well as

the estimation of an entire subspace as opposed to a single component.

Sparsity inducing priors Connections between SPCA and SLR has been noted in the prob-

abilistic setting, albeit in an indirect manner. At a high level, the same sparsity-inducing priors

can be used for either problem.

[KKGP14] consider the problem of given a base prior, finding another distribution closest

to it in KL divergence ("information projection") while satisfying some constraints. They look

at domain constraints (limiting domain to a particular subset) in particular, and show that the

desired optimal distribution is just the base distribution restricted to the subset and rescaled

appropriately. Now, if we want to do information projection on all the distributions that k-

sparse support S, then it turns out that the cost function (KL divergence) is submodular in S,
so one can achieve (1 - 1/e)-approximation to the optimal objective.

[KGPK15] look at the probabilistic formulation of PCA along with the EM algorithm for

it. In the E-step, they optimize over distribution Q that has sparse support. Since the E-step

minimizes KL divergence between the distribution of latent variables (principal components)
and Q, the technique from [KKGP14] can be readily applied. However, as based on EM they

can only guarantee local optimality.

Beyond SPCA and SLR Beyond SPCA and SLR, a wide variety of models have been

studied in the high-dimensional setting. Notably, many of the approaches share a common pool

of techniques and analyses. This was formalized in the work of [NYW'R09], who gave a general

framework and explanation for why a family of M-estimators with an appropriate loss function

and regularizer has been so successful in a variety of high-dimensional statistical tasks with low

dimensional structure, including sparse regression, structured covariance estimation, low rank

matrix approximation, sparse principal component analysis, and discrete Markov random fields.
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Chapter 3

Preliminaries

We give the precise setup for SPCA and SLR that we will study, and review some notation that

is used throughout the thesis.

3.1 Problem formulation for SPCA

Hypothesis testing Let X(W), X(2)'.. , X(n) be n i.i.d. copies of a Gaussian random variable

X in Rd. Let X E Rnxd be the matrix whose rows are X(). The objective of the SPCA detection

problem is to distinguish whether there is some distinguished (sparse) direction u along which

X has higher variance. In SPCA, we also assume that this direction is sparse. This motivates

the following null and alternate hypotheses:

HO : X - 'f(O, Id) and H1 : X - A(O, Id + OuuT ),

where u has unit norm and at most k nonzero entries. The distribution under H1 is known as

the spiked covariance model. As smaller 0 makes the problem only harder, we assume 0 < 1 for

ease of computation and as standard in literature.

We say that a test discriminates between HO and H1 with probability 1 - 6 if both type I

and II errors have a probability smaller than J. The goal is therefore to find a statistic O(X)

and a threshold r depending on d, n, k, 6 such that for the test b(X) = 1{(X) > T}

PH( (,O(X) = 1) J and PH, (O(X) = 0) 6.

We assume the following additional condition on the spike u.

Assumption 3.1. a u? < I- E9a for at least one i E [d] where cmin > 0 is some constant.

While in general we always have at least one i E [d] s.t. U? ;> , this is not enough for our

regression setup, since we want at least one other coordinate j to have sufficient correlation with

coordinate i. We remark that the above condition is a very mild technical condition. If it were
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violated, almost all of the mass of u is on a single coordinate, so a simple procedure for testing

the variance (which is akin to diagonal thresholding) would suffice. Furthermore, for u drawn

uniformly random from Sk-1, we in fact expect a constant fraction of the coordinates to have

mass at least 'ia, in which case the above assumption is immediately satisfied.

Support recovery The goal of support recovery is to identify the support of u when Xi's are

drawn from the spiked distribution under H1 . More precisely, we say that a support recovery

algorithm succeeds if the recovered support S equals S, the support of u. As standard in the

literature [AW09, MB06], we need to assume a minimal bound on the size of entries of u in the

support.

Though the settings are a bit different, this minimal bound also is consistent with lower

bounds known for sparse recovery. These lower bounds ([FRGO9, WaiO7]; bound of [FRG09] is a

factor of k weaker) imply that the number of samples (or measurements in their language) must

grow roughly as n > k log d where urnin is the smallest entry of our signal u normalized by

1/v'.
For our support recovery algorithm, we will make the following assumption (note that it

implies Assumption 3.1 and is much stronger):

Assumption 3.2. Iui ;> cmin/O V for some constant 0 < cmin < 1 Vi E [d]

This is nearly optimal in comparison to the lower bounds mentioned above. If the smallest

entries is smaller by a factor of some constant C, then signal strength 0 needs to be stronger by

a factor of C for our recovery algorithm to succeed, which is consistent with the lower bounds.

Unknown sparsity Note that throughout the paper we assume that the sparsity level k is

known. However, if k is unknown, standard techniques could be used to adaptively find approx-

imate values of k. For hypothesis testing for instance, we can start with an initial overestimate

k', and keep halving until we get enough coordinates i with Qi that passes the threshold for the

given k'.

3.2 Problem formulation for SLR

We are given (y, X) where y E R" and X E R',d that are linked by the linear model y = X3* +w.
The vector w (E R' is i.i.d. N(0, o2), and our goal is to compute / that minimizes the prediction

error (or MSE) -1X1* -- X#1|.

We define the restricted eigenvalue constant that will be important in our analysis. Many

variants exist in the literature. Below, we give a definition from [ZWJ14].

Definition 3.3. First define the cone

C(S) = {#p E Rd I 11|3sc11i < 3111s1Il}
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where S' denotes the complement, 13T is [3 restricted to the subset T. The restricted eigenvalue

(RE) constant of X, denoted -y(X), is defined as the largest constant 'y s.t.

1
--nX#3|I 2 -yII32L for all 3 E U C(S)

|S|=k,SC[dj

Blackbox condition We now define the condition to require on our SLR blackbox, which is

invoked as SLR(y, X, k). This is similar to the guarantees achieved by known results for SLR.

Condition 3.4. Condition A. Let -y(X) denote the restricted eigenvalue of X. There are uni-

versal constants c, c', c" such that S LR(y, X, k) outputs / that is k-sparse and satisfies:

1 - c 0 2k log d
X- Xn*2 < c 7X 2  ko V/3* E Bo(k) w.p. > 1 - c' exp(-c"k log d)

n ~ y(X) n

3.3 Notation

We describe some of the notation used in this thesis. See page 7 for a more extensive list of

symbols used.

Capital letters such as X, X are used to denote matrices, and lowercase letters such as y for

vectors. For clarity, we reserve X for the data matrix in SPCA and X for the design matrix

SLR. Xi is the ith column of X, and X-i is the submatrix obtained by deleting the ith column

from X. Similarly, ui denotes denotes the ith coordinate of u and u-i E Rd-1 is u with ith

coordinate removed.

ZS,T is E = E[XXT] restricted to rows in S and columns in T; if S = T, we abbreviate it as

Es. For example, E2:d is E restricted to coordinates 2, ... , d.

All vector norms are 2-norms unless specified otherwise.

C, C' to denote constants that may change from line to line.
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Chapter 4

Reduction

We first discuss the underlying linear structure in the data generated from the spiked covariance

model. The specifics of this linear structure will be used in defining our statistic and algorithms.

We then state and prove the guarantees for our algorithms.

4.1 The linear model

We now set up linear regression for the data X from the SPCA problem. One natural way to

apply regression to our samples X from SPCA is to regress one column or coordinate on the

remaining columns. More formally, let X_; denote the matrix of samples in the SPCA model

with the ith column removed. For each column i, let us take as input to the blackbox SLR the

design matrix X = X-i and the response variable y = Xi.

Under the alternate hypothesis H1 , if i E S, then Xi is correlated with Xj where j E S, j = i.

Using properties of multivariate Gaussians, we can write y = X0* + w where * =U-i

and w ~ K(O, a) with = 1 +( U . By theory of LMMSE, this 0* minimizes the error

0a. (See Appendix A.1, A.2 for details of this calculation.) If i g S, and for any i E [d] under

the null hypothesis, y = w where w = X- K(O, 1) (implicitly 3* = 0).

Because population covariance E = E[XXT] has minimum eigenvalue 1, with high probability

the sample design matrix X has constant restricted eigenvalue value given enough samples n (see

Appendix A.2.1 for more details), and the prediction error guarantee of Condition 3.4 will be

good enough for our analysis.

Though the dimension and the sparsity of our SLR instances are d - 1 and k - 1 (since we

remove one column from the SPCA data matrix X to obtain the design matrix X), for ease of

exposition we just use d, k in their place since it only affects our analysis up to small constant

factors.
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4.2 Algorithms and main results

4.2.1 Intuition of test statistic

Consider a matrix X of samples generated from the single spiked covariance model. The intuition

behind the algorithm is that if i is in the support of the spike, then the rest of the support should

allow to provide a nontrivial prediction for Xi since variables in the support are correlated.

Conversely, for i not in the support (or under the isotropic null hypothesis), all of the variables

are independent and other variables are useless for predicting Xi. So we regress Xi onto the

rest of the variables and our goal is to measure the reduction in noise.

How much predictive power do we gain by using X-j? The linear minimum mean-square-

error (LMMSE) estimate' of Xi conditioned on X-i (when i is on support) turns out to put

approximately 9/k weight on all the other coordinates on support. 2 A calculation shows that

the variance in Xi is reduced by approximately 62 /k. We want to measure this reduction in

noise to detect when i is on support or not.

Suppose for instance that we have access to 3* rather than 3 (note that this is not possible

in practice since we do not know the support!). Since we want to measure the reduction in noise

when the variable is on support, as a first step we might employ the following statistic:

1

n

Unfortunately this statistic will not be able to distinguish the two hypotheses, as the reduc-

tion in LMMSE is miniscule (on the order of 02 /k compared to order of 1 + 9), so deviation due

to random sampling will mask the reduction in noise.

We can fix this by adding the variance term y 112:

= -||yII2l y - X0*I11
Qi 2 22n n

Notice that since y = X3* + w, the noise term IjwI12 cancels out nicely. This effectively shifts

the mean of the statistic, and now we are left with a statistic that is close to 0 under Ho and is

larger by about 92 /k under H1, so distinguishing using this statistic is more effective. On a more

intuitive level, including IIy|I allows us to measure the relative gain in predictive power without

being penalized by a possibly large variance in y. Fluctuations in y due to noise will typically

be canceled out in the difference of terms in Qj, minimizing the variance of our statistic.

We have to add one final fix to the above estimator. We obviously do not have access to /*,

so we must use the estimate # = SLR(y, X, k) (y, X are as defined in Section 4.1) which we get

from our blackbox. The bulk of the analysis is showing that this substitution does not affect

much of the discriminative power of Qj.

'See Appendix A.1 for more details.
2For illustrative purposes, we consider the case where u is uniform on all k coordinates on support
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This gives our final statistic:

= 1 1y12!Ily X1.
Qi= - y 2 -2y- ,||n n

4.2.2 Algorithms

Below we give two algorithms based on the Q statistic, one for hypothesis testing and one for

support recovery:

Algorithm 1 Q-hypothesis testing

Input: X E Rdx, k
Output: 4'
for i = 1, ... ,d do

i =SLR(Xi,X-i,k)
I JIIX,12 I IX, _X_3.112Qi = 2|l j- - X- 2ls

if Q, > 13k log I then
return 4' = 1

end if
end for
Return 4 = 0

Algorithm 2 Q-support recovery

Input: X E Rdn, k
, = 0
for i = 1, ... ,d do

A3 =SLR(Xi,X-i,k)
i = Q 1IXI12- 1lX, - XaIJI|2

if Qj > 13k log 1 thenn
S := U {i}

end if
end for
Return S

Below we summarize our guarantees for the above algorithms.

Theorem 4.1 (Hypothesis test). Given SLR that satisfies Condition 3.4 and with runtime

T(d, n, k) per instance, and given Assumption 3.1, there exist universal constants c1, C2 , c3, c4
s.t. if 02 > e k2 og d and n > c2 k log d then Algorithm 1 outputs ' s.t.

m2in

PHo M((X) = 1) V PH1 ('(X) = 0) <; c3 exp(-c 4 k log d)

in time O(dT +d 2n).

Theorem 4.2 (Support recovery). Under the same condition on SLR and given Assumption 3.2,

if 02 > L_ k 2 g d Algorithm 2 above finds S = S with probability at least 1 - c 3 exp(-c4k log d)

in time O(dT + d2n).

Remark 4.3. Though both guarantees involve bounding the signal strength 0 in terms of Cmin,
Assumption 3.2 on u in Theorem 4.2 is much stronger as all entries in the support of u need to

be minimally bounded for Assumption 3.2 to hold.
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4.3 Analysis

In this section we analyze the distribution of Qi under both Ho and H1 on our way to proving

Theorems 4.1 and 4.2.

4.3.1 Analysis of Qi under H1

Without loss of generality assume the support of u, denoted S, is {1, ... , k} and consider the first

coordinate. We expand Q, by using y = X3* + w as follows:

1 91 _ 1 2 1
= -|1yI12 - - X^311 2 -IiX,3* + w|12 - 1X/3* - Xj - - (X*- X, ) - IIwI12

1 2 1 2 -
= -IIX#P*112 -w X3* - -(X3*- X5311 2) - -wT(X* - X)n n n n

Observe that the noise term IIw112 cancels conveniently.

Before bounding each of these four terms, we introduce a useful lemma to bound cross terms

involving noise w:

Lemma 4.4 (Lemmas 8 and 9, [IRWY 11]). For any fixed X E Rn" and independent noise vector

w eC R' with i.i.d. V(O, o.2 ) entries:

< 90- k log -n n Fk

for all 0 e BO(2k) w.p. at least > 1 - 2 exp(-40k log(d/k))

We bound each term as follows:

Term 1. The first term '. contains the signal from the spike; notice its resemblance to

the k-sparse eigenvalue statistic. Rewritten in another way,

(#*)T * = (#*)T $2:0*n

Hence, we expect this to concentrate around (I*)T E2 :d*, which simplifies to (see Appendix A.2

for the full calculation):

(#*)TE 2 :d3* = (E1,2:dE 2)12:d(r2j2:d,) = 2 (1 - U)

For concentration, observe that we may rewrite

T- 1 n

(/*)T 2:d/3* = E(Xi#*)2
i=1

where X( is the ith row, representing the ith sample. This is just an appropriately scaled
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chi-squared random variable with n degrees of freedom (since each X(i)B* is i.i.d. normal), and

the expected value of each term in the sum is the same as computed above. Applying a lower

tail bound on X 2 distribution (see Appendix ), with probability at least 1 - 6 we have

0 T 92 1(1 - u1) log(1/) )
( 2) 2:0' > -1 -2 21 + (1 - uj)9 n

Choosing J = exp(-k log d),

X#*| 2 (1 -U) 1-2 klogd

(a) 1 + 2U2(1-2)
( ) - - 2

2 1+(1-u2)9
(b) g2
> C 0(4.1)

where (a) as long as n > 16k log d and (b) since 9 < 1 and u2(1-u2) > c /k under Assumption

3.1.

Term 2. The absolute value of the second term gwTXO* can be bounded by 181*2 k log
n n iogd

using Lemma 4.4. From (4.1) as long as 92 C k2log

||#||2 r g_ Ci 2 > klog d
n k n

so the first two terms together are lower bounded by:

n (XIIX*1 2 - 18 k logd/k) > C (4.2)

constant fraction of the first term.

Term 3. The third term, which is the prediction error , 2 is upper bounded by
.2klog d with probability at least 1 - C exp(-C'k log d) by Condition 3.4 on our SLR black-

box. Note o.2 < 2 as we assume 9 < 1 (see Section 4.1). Now, -y(X) > I with probability at

least 1 - C exp(-C'n) if n > C"k log d since 0 < 1 (see Appendix A.2.1 for more details). Then,

1X* - X4112 C k log d

n - X 2 - n

Term 4. The contribution of the last cross term ZwTX(O* - /) can also bounded by Lemma

4.4 w.h.p. (note 3* - / E Bo(2k))

IWT X(#* - U) 1 X(#* - #)|112 k 1d
n -n r k
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Combined with the above bound for prediction error, this bounds the cross term's contribution

by at most C-0L!.

Putting the bounds on four terms together, we get the following lower bound on Q.

Lemma 4.5. There exists constants C1, C2, c3,c4 s.t. if 02 > k2 1og and n > c2 k logd,
with probability at least 1 - c3 exp(-c4 k log d), for any i E S that satisfies the size bound in

Assumption 3.1,
13k log d

n

Proof. From 1-4 above, by union bound, all four bounds fail to hold with probability at most

C3 exp(-c 4 k log d) for appropriate constants if 02 > , k2 log d (required by Term 2) and n >

c 2 k log d for some c2 > 0 (note that both Terms 1 and 3 require sufficient number of samples n).

That is, we have:
o2 klogd

Qi > cminC- - C'
k n

So if ci is sufficiently large, the above bound is greater than 3k log

4.3.2 Analysis of Qi under HO

We could proceed by decomposing Qi the same way as in H1 ; all the error terms including

prediction error are still bounded by O(k log d/n) in magnitude, and the signal term is gone now

since 3* = 0. This will give the same upper bound (up to a constant) as the following proof is

about to show. However, we find the following direct analysis more informative and intuitive.

Since our goal is to upper bound Qi under Ho, we may let 3 be the optimal possible choice

given y and X (one that minimizes ||y - X/3I, and hence maximizes Qi). We further break this

into two steps. We enumerate over all possible subsets S of size k, and conditioned on each S,
choose the optimal /.

Fix some support S of size k. The span of Xs is at most a k-dimensional subspace of R'.

Hence, we can consider some unitary transformation U of R" that maps the span of XS into the

subspace spanned by the first k standard basis vectors. Since U is an isometry by definition,

nQi = 11y111 - jjy - X/s||2 = IIUyI2 - ||Uy - UX-sI11

Let # = Uy. Since UXs has nonzero entries only in the first k coordinates, the optimal choice

(in the sense of maximizing the above quantity) of 3s is to choose linear combinations of the

first k columns of X so that UXOS equals the first k coordinates of . Then, nQi is just the

squared norm of the first k coordinates of . Since U is some unitary matrix that is independent

of y (being a function of XS which is independent of y), still has i.i.d. .A(0, 1) entries, and

hence nQi is a x2-var with k degrees of freedom.

Now we apply an upper tail bound on the X 2 distribution (See Appendix A.3.1). Choosing

and after union bounding over all (d) <; k supports S, nQi > k + 12k log ,or
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Q > 13 ' logwith probability at most exp(-3k log 4 + k log d) < exp(-k log ) if 4 > e.

n k3k kog

Lemma 4.6. Under H0 , Vi Qi < 13k log f w.p. at least 1 - exp(-k log A).

Remark 4.7. Union bounding over all S is necessary for the analysis. For instance, we cannot

just fix S to be S(3) (this denotes the support of 3) since is a function of y, so fixing S changes

the distribution of y.

Remark 4.8. Observe that this analysis of Qi for Ho also extends immediately to H1 when

coordinate i is outside the support. The reason the analysis cannot extend to when i E S is

because U is not independent of y in this case.

13k log TCorollary 4.9. Under H1 , if i V S, Qi < -3--g w.p. at least 1 - exp(-k log ().

4.3.3 Proof of Theorem 4.1

Proof. Proof follows immediately from Lemma 4.6 and Lemma 4.5. Now, we can use our estima-

tors Qi to separate Ho and H1 . Under H0 , applying Lemma 4.6 to each coordinate i and union

bounding, Vi, Qi 5 13k log f with probability at least 1 - exp(-Ck log d). Meanwhile, under H1 ,

if we consider any coordinate i that satisfies Assumption 3.1, Lemma 4.5 gives

13k log d
n

Sinc ~ tsts hethr ~ 3k log
with probability at least 1 - C3 exp(-c4k log d). Since 0 tests whether Qi > 1n for at least

one i, 'b distinguishes Ho and H1 successfully, with bound on type I and type II error probability

c3 exp(-c4k log d) for appropriate constants c 3 , c 4 (note, these may be different from those of

Lemma 4.5). For runtime, note that we make d oracle calls to SLR and work with matrices of

size n x d.

4.3.4 Proof of Theorem 4.2

Proof. As long as every ui for i E S has magnitude cin/v k as in Assumption 3.2, we can

repeat the same analysis from above to all coordinates in the support. If 0 meets the same

threshold, Qi > 13k log 4 /n for all i E S with probability at least 1- C exp(-C'k log d) by union

bound. Also, recall Qi > 13k log d /n for any i V S with probability at most C exp(-C'k log d)

by Corollary 4.9. By union bound over all d - k coordinates outside the support, the error

probability is at most d - C exp(-C'k log d) C exp(-C"k log d). We showed that with high

probability we exactly recover the support S of u.

Runtime analysis is identical to that for the hypothesis test. 0
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4.4 Discussion

4.4.1 Running time

The runtime of both Algorithms 1 and 2 is 0(nd2 ),3 if we assume the SLR blackbox takes nearly

linear time in input size, O(nd), which is achieved by known existing algorithms. This seems a

bit expensive at first, but computing the sample covariance matrix alone takes O(nd2) time. 4

For a broad comparison, we consider spectral methods and SDP-based methods, though

there are methods that do not fall in either category.

Spectral methods such as covariance thresholding or truncated power method have an iter-

ation cost O(d2 ) due to operating on d x d matrices, and hence have total running time O(d 2)
(0(.) hiding precise convergence rate) in addition to the same O(nd2 ) initialization time.

SDP-based methods in general take 6(d3 ) time, the time taken by interior point methods to

optimize. So overall, Algorithms 1 and 2 are competitive choices for (single spiked) SPCA, at

least theoretically.

4.4.2 Alternate blackbox

The above algorithms seem rather wasteful because there is a lot of overlapping information

between the different 3's we get for the Qi's on support. For instance, it is plausible that /
contains a good fraction of the entries in the support if the coordinate we are regressing on

happens to be on support. In such case, it is unnecessary to compute Qj's for the j's we already

are confident to be on support.

We may be able to utilize such information more easily if instead of prediction error we

consider support recovery or parameter estimation (say in f2-norm) guarantees for our SLR

blackbox.

4.4.3 Robustness of Q statistic to rescaling

A natural and simple way to make diagonal thresholding fail is to rescale all the variables so

that their variance is equal. Intuitively, we expect our algorithms based on Q to be robust to

rescaling, since it should be possible to predict one variable in the support from the others in

the support even after some rescaling.

We can more precisely justify this intuition as follows.. Let X <- DX be the rescaling of

X, where D is some diagonal matrix. Let Ds be D restricted to rows and columns in S. Note

that Y,, the covariance matrix of the rescaled data, is just DED by expanding the definition.

Similarly, note 52:d,1 = D1D2:dE2:d,1 where D2:d denotes D without row and column 1. Now,

3In what follows 6() hides possible log and accuracy parameter e factors.
4 Assuming one is using naive implementation of matrix multiplication.
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recall the term which dominated our analysis of Qi under H1 , (#*)TE 2 :d1*, which was equal to

E1,2:dE2  2:d,1

We replace the covariances by their rescaled versions to obtain:

3* j 1*= (DlEl, 2:dD2:)D E- D- (D2:dE2:d,1D1) = D - (#*)T E2:d3*

For the spiked covariance model, rescaling variances to one amount to rescaling with DI =

- Thus, we see that our signal strength is affected only by constant factor (assuming 0 ; 1).

We should note though that after normalizing variances, the variance term | yJJ2 loses its

effect in the Q statistic, and Q is essentially affected by just the reconstruction error 2Iy - X/3I.

A new model for SPCA? This robustness to rescaling is an attractive property because

intuitively, our algorithms for detecting correlated structure in data should be invariant to

rescaling of data; the precise scale or units for which one variable is measured should not have

an impact on our ability to find meaningful structure underlying the data. Perhaps this suggests

an avenue for exploring new alternative models for SPCA that are more flexible and robust.
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Chapter 5

Experiments

On randomly simulated synthetic data we demonstrate the performance of our algorithm com-

pared to other existing algorithms for SPCA. The code was implemented in Python using stan-

dard libraries. We refer to both hypothesis and support recovery variants of our algorithm from

Section 4.2 as Q.

5.1 Support recovery

We randomly generate a spike u by choosing uniformly among all k-sparse vectors that are

uniform on all coordinates (with random signs). In order for comparison with the work of

[DM14}, we use the same parameter setting of n = d. We study how the performance of

four algorithms (diagonal thresholding, covariance thresholding, Q with thresholded Lasso with

A = 0.1, and Q with FoBa with E = 0.1) vary over various values of k for fixed n = d. For

covariance thresholding, we tried various levels of their parameter T and indeed it performed

best at [DM14]'s recommended value of r ~ 4, which is what is shown. We modified each

algorithm to return the top k most likely coordinates in the support (rather than thresholding

based on a cutoff), and we count the fraction of planted support recovered. This is averaged

over T = 50 trials. On the horizontal axis we measure k/v's; our metric on the vertical axis

is the fraction of support correctly recovered. We observe that across almost all regimes of k

both versions of Q algorithms outperform covariance thresholding. It is an interesting question

to investigate whether the log d factor in our analysis can be removed. Diagonal thresholding is

outperformed by all other methods across most values of k.
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Figure 5.1: Performance of diagonal thresholding (DT), covariance thresholding (CT), and Q
for support recovery at P. = d = 625, 1250, varying values of k, and 0 = 4

5.2 Hypothesis testing

Here we instead generate a spike u by sampling a uniformly random direction from the k-

dimensional unit sphere, and embedding the vector at a random subset of k coordinates among

d coordinates. For hypothesis testing, in a single trial, we compute various statistics (diagonal

thresholding (DT), Minimal Dual Perturbation (MDP), and Q) after drawing n samples from

N(0, Id + OuuT). We repeat for T = 50 trials, and plot the resulting empirical distribution for

each statistic. We observe similar performance of DT and Q, while MDP seems slightly more

effective at distinguishing Ho and H, at the same signal strength (that is, the distributions of

the statistics under Ho vs. H1 are more well-separated).

Rescaling variables As discussed in Section 4.4.3, our algorithms should be robust to

rescaling the covariance matrix to the correlation matrix. As illustrated in Figure 5.2 (right),

DT fails while Q appears to be still effective for distinguishing hypotheses the same regime of

parameters. Other methods such as MDP and CT also appear to be robust to such rescaling
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similarly for T1. Effect of rescaling covariance matrix
demonstrated (right)

MDP, and Q for hypothesis testing at
denotes the statistic T under H0 , and
to make variances indistinguishable is

(not shown). This suggests that more modern algorithms for SPCA may be more appropriate

than diagonal thresholding in practice, particularly on instances where the relative scales of the

variables may not be accurate or knowable in advance, but we still want to be able to find a

correlational structure between the variables.
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Chapter 6

Conclusion

We gave a reduction from SPCA to SLR that works up to the computational threshold for SPCA

that we believe based on average-case hardness assumptions. One obvious question is if there

is a different reduction that extends all the way down to the statistical threshold; this would

imply the average-case hardness of SLR under some conditions.

Another limitation of the current reduction is that it does not readily extend to the sub-

Gaussian setting. Such an extension would be a more robust result as Gaussian assumption is

highly restrictive while sub-Gaussian random variables capture other useful classes of random

variables such as those that are bounded. A related question is formulating a model more robust

than the gaussian spiked covariance model for SPCA, yet still amenable to analysis.

It would also be interesting to see if the reduction can be done in the other direction, from

SLR to SPCA. One would probably have to restrict the design matrix to a certain class in order

to have sufficient control on its distribution.
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Appendix A

Supplement

A.1 Linear minimum mean-square-error estimation

Given random variables Y and X (this can be a vector more generally), a natural question is
what is the best prediction for Y conditioned on knowing X = x? What is considered "best"
can vary, but usually we consider the mean-square-error. That is, we want to come up with (x)
s.t.

E[(Y - 9)2]

is minimized.
It is not hard to show that y is just the conditional expectation of Y conditioned on X. The

minimum mean-square-error estimate can be a highly nontrivial function of X.
The linear minimum mean-square-error (LMMSE) estimate instead restricts the attention

to estimators of the form Y = AX + b. Notice here that A and b are fixed and are not functions
of X.

One can show that the LMMSE estimator is given by: A = (Exx)- 1)Exy, where E. is
the appropriately indexed covariance matrix, and b is chosen in the obvious way to make our
estimator unbiased.

A.2 Calculations for linear model from Section 4.1

To recap our setup, we input the design matrix X = Xi and the response variable y = Xi
as inputs to an SLR blackbox. Our goal is to express y as a linear function of X plus some
independent noise w. Without loss of generality let i = 1, and for our discussion below assume
S = {1, ... , k}. For illustration, at times we will simplify our calculation further for the uniform
case where ui = 1 for 1< i <k and ui =0 for i> k.

For the moment, just consider one row of X, corresponding to one particular sample X of
the original SPCA distribution. Since X is jointly Gaussian, we can express (the expectation
of) y = X, as a linear function of the other coordinates:

E[XlIX2 :d = X2:d] = E1,2:d(E2:d)- X2:d

Hence we can write

X1 = E1,2:d(E2:d)- X2:d + W
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where w ~ K(O, a2) for some a to be determined and w 1L Xi for i = 2, .. , d.

By directly computing the variance of the above expression for X1 , we deduce an expression

for the noise level:
o2 = El1 - EI,2:d(F2:d)~ E2:d,1

Note that u2 is just E11 under HO. We proceed to compute a2 under Hl, when E = Id+0uT.

To compute (E2:d) 1, we use (a special case of) the Sherman-Morrison formula: (I + wv T)1 =

I -WVT
1+v w

2 (Id-1 + Ou-uI1  =Id-1 - 1 + (1

where u-1 E Rd-i is u restricted to coordinates 2,..., d.

E1,2:d(E2:)-E2:d,1 = ( u) 2 uI(I + 0u-iu1l)u-

S+22(l - u2)

1+ (1 - u)6

(specializing to uniform case again)

0 2 62
k k 1+ k k( + 0)

Finally, substituting into the expression for u2

2_0
2 U2 (1 - U2)

S= 1 + OU2U =1O1 + (1 -u )0

0ui= 1+

1 + (1 - u2)6

< 2 if 0 < 1

We remark that the noise level of column 1 has been reduced by roughly T := by regressing

on correlated columns.

In summary, under H, (and if 1 E S) we can write

y = X#* + W

where

#*=(E2:d)- E2:d,l

I 1+ (1 - Ui)20 -

1 1 - (1 - U ) U-1

Oui
I + (I - U2)0
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(technically, the definition of 3* on the RHS is a k - 1 dimensional vector, but we augment it

with zeros to make it d - 1 dimensional) and w ~ K(O, a2 ) where a 2 = 1+ " I . Note that

in the uniform case, /3* - 111 k-1 as 0 -+ oc where Ik-1 is uniform 1 on first k - 1 coordinates,
as expected.

A.2.1 Properties of design matrix X

Restricted eigenvalue (RE) Here we check that X defined as in Section 4.1 has constant

restricted eigenvalue constant. This allows us to apply Condition 3.4 for the SLR blackbox with

good guarantee on prediction error.

The rows of X are drawn from (O,IdXd1 + Ou-1 T 1) where u-1 is u restricted to coor-

dinates 2,..., d wlog. 1

Let E = Id-lxd-1 + OUI1U . We can show that EI/2 satisfies RE with y = 1 by bound-

ing E's minimum eigenvalue. First, we compute the eigenvalues of Ou-iuI1 . Ou- 1uTI has a

nullspace of dimension d - 2, so eigenvalue 0 has multiplicity d - 2. u-1 is a trivial eigenvector
with eigenvalue Ouiu-i = 91. Therefore, E has eigenvalues 1 and 1 + 0%.

Now we can extend this to the sample matrix X by applying Corollary 1 of [RWY1O] (also

see Example 3 therein), and conclude that as soon as n > C" # u k log d = C(1 + O)k log d

or n = Q(k log p) the matrix X satisfies RE with -y(X) = 1/8.

We remark that the following small technical condition also appears in known bounds on

prediction error:

Column normalization This is a condition on the scale of X relative to the noise in SLR,
which is always a 2 .

||X6|| 2 101
n

for all 0 E Bo(2k)

We can always rescale X (and hence X) to satisfy this, which would also rescale the noise

level o in our linear model since the noise is derived from coming X from the SPCA generative

model, rather than added independently as in the usual SLR setup.

Hence, since all scale dependent quantities are scaled by the same amount when we scale

the original data X, wlog we may continue to use the same X and a in our analysis. As the

column normalization condition does not affect us, we drop it from Condition 3.4 of our blackbox

assumption.

'We assume here that 1 E S as in the previous section
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A.3 Tail inequalities

A.3.1 Chi-squared

Lemma A.1 (Concentration on upper and lower tails of the x 2 distribution ([LMOO], Lemma
1)). Let Z be the x2 random variable with k degrees of freedom. Then,

Pr(Z - k > 2Vkt + 2t) exp(-t)

Pr(Z - X > 2v'it) < exp(-t)

We can simplify the upper tail bound as follows for convenience:

Corollary A.2. For X2 r.v. Z with k degrees of freedom and deviation t > 1, Pr (zk > 4t) <

exp(-kt).
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