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Summary
We show how to efficiently transform a black-box
solver for Sparse Linear Regression (SLR)
into an algorithm for Sparse Principal Com-
ponent Analysis (SPCA), two fundamental
statistical problems for which analyses have been
largely disjoint.

1. Background
• Principal component analysis (PCA) is a
fundamental technique for dimension reduction
used widely in data analysis. PCA projects data
along a few directions that explain most of the
variance of observed data.

Figure 1: PCA for 2D data; arrows show principal components.

•Recent work in high-dimensional statistics
has focused on sparse principal component
analysis (SPCA), as ordinary PCA estimates
become inconsistent in this regime.

•Sparsity assumptions have played an important
role in a variety of other problems in
high-dimensional statistics, in particular sparse
linear regression.

•Both problems exhibit similar
statistical-computational trade-offs (i.e. gap in
performance between information-theoretically
optimal and computationally efficient procedures)

2. Question

What are statistical and algorithmic connections between sparse PCA and sparse linear regression?

3-i. SPCA model
We consider the spiked covariance model:

•d-dimensional Gaussiasn random variable
X ∼ N (0, Id×d + θ~u~u>)

• spike ~u is sparse; at most k � d non-zero entries
•n samples are observed; X ∈ Rd×n

• signal-to-noise ratio θ

We study two different objectives:
• hypothesis testing: distinguish above distribution
from isotropic distribution N(0, Id×d)

• support recovery: recover the support of ~u

3-ii. SLR model
Data is generated from the linear model

y = Xβ∗ + w

•Observed: y ∈ Rn; design matrix X ∈ Rn×d

•Goal is to recover β? under some metric
•w ∈ Rn with i.i.d. N (0, σ2) entries

We assume that our black-box oracle SLR sat-
isfies the following prediction error guarantee:
SLR(y,X, k) outputs ̂

β that is k-sparse and w.h.p:
1
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where γ(X) is the restricted eigenvalue constant.

4. Main Theorem
Given black-box access to an SLR oracle that satisfies the above prediction error guarantee, we can efficiently
solve SPCA instances from the single spiked covariance model if the signal is strong enough (θ2 & k2 log d

n ).

5. Reduction
Algorithm 1 hypothesis testing

Input: X ∈ Rd×n, k
Output: {0, 1} . 0 for null, 1 for spiked
for i = 1, . . . , d do

̂
βi = SLR(Xi,X−i, k) . regress ith coordinate

on the rest
Qi = 1

n‖Xi‖2
2 − 1

n‖Xi −X−i
̂
βi‖2

2

if Qi &
k log d

k
n then return 1 end if

end for
return 0

Analysis boils down to analyzing the distribution of
Qi.

6. Experiments

Figure 2: Performance of diagonal thresholding, SPCA (ZHT),
truncated power method, covariance thresholding, and SP-
CAvSLR (ours) for support recovery at n = d = 625, θ = 3.0

6. Experiments (cont.)
Many iterative approaches to SPCA are based on
initialization by filtering for the highest variances.
Such approaches are not robust to the rescaling.

Figure 3: Performance of diagonal thresholding (D) vs. our
statistic (Q) for hypothesis testing at n = 200, d = 500, k = 30;
right is after rescaling all variances to one (note higher θ was
used).

7. Related work

SPCA algorithm approach signal strength
Diagonal thresholding variance filtering nearly optimal
“SPCA” (Zou et al.) sparse regression ??
(many papers) SDP-relaxation nearly optimal
Truncated Power spectral/iterative nearly optimal
Covariance Thresholding spectral optimal
SPCAvSLR (ours) sparse regression nearly optimal

Table 1: Various approaches to SPCA

8. Conclusion
•We demonstrated a mathematical connection
between SPCA and SLR.

•New algorithmic framework performs comparably
with increased robustness to scale of data.
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