
Algorithmic Machine Learning (9 pages) Spring 2014

Fourier Theoretic Probabilistic Inference over Permutations
Instructor:Bobby Kleinberg Sung Min Park (sp765)

1 Introduction

This is a survey of the main ideas from “Fourier Theoretic Probabilistic Inference over Permutations” by
Huang et al.

2 Motivation

Permutations naturally arise in many real world problems. For instance, a voting preference for a set of
candidates is a permutation. Another example that motivates this study is that of identity management
problem. There are n tracks, each of which is occupied by exactly one of n people. When people pass near
each other, confusion can arise and we may lose track of who is on which track. The task is to maintain
a probability distribution over mapping from object tracks to identities (which is over of permutation of n
elements).

Of course, what makes maintaining probability distribution over a permutation group Sn hard is that Sn
becomes large for even very small values of n. Common heuristics for distributions, such as graphical models,
cannot capture the mutual exclusability of constraints of a permutation.

2.1 Random walks and the Forward algorithm

First, we describe our model for the above identity management problem. The transition model is that
of random walks over the permutation group. At each time step t, we have a a new model Q(t), which is
a probability distribution that models some event. We sample a random permutation π(t) from Q(t), and
generate the new state by σ(t+1) = π(t)σ(t).

We also make observations z(t). We assume that we know the transition models P (σ(t)|σ(t−1)) for each time
step, as well as the observation models P (z(t)|σ(t)) (for example, this might reflect the distribution over the
color of clothing for each individual).

Based on this information, we can compute the likelihood of any permutation after a sequence of mixing
events and observations by iterating the following two steps:

1. prediction/roll up: P (σ(t+1)) =
∑
σ(t)

P (σ(t+1)|σ(t)) · P (σ(t))

2. conditioning: P (σ|z) = 1
ZP (z|σ) ·P (σ) (this is just application of Bayes’ rule followed by normalization

using Z)

Naively, this algorithm runs in O((n!)2, which is impractical.

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 2 of 9)

3 Fourier Transform on Finite Groups

Their first goal is to find a way to more compactly represent distributions over permutations (a distribution
is just a function from the permutation group to the reals).

Recall that the familiar Fourier transform is used to decompose a function whose domain is the real line into
a spectrum of frequencies. Often, the advantage of representing the function in the frequency domain is that
most of the energy of the function is concentrated in a few low order frequencies; hence, we can approximate
the function well by keeping track of a fewer number of coefficients.

There is a group theoretic generalization, which look at functions whose domain is a group G. The hope is
that we can represent the probability distribution on G more compactly if we could somehow do the analog
of Fourier transform on the real line. But first, we must introduce some concepts from representation theory.

3.1 Group Representation

A representation of a group G on a vector space V over a field K is a homomorphism ρ : G → GL(V),
i.e. ∀σ1, σ2 ∈ G, ρ(σ1σ2) = ρ(σ1) · ρ(σ2). GL(V) is the general linear group, the group of all bijective linear
transformations V → V , with functional composition as group operation. For our purposes, we focus on the
case where V has finite dimension dρ, so GL(V) is the set of invertible dρ × dρ matrices. dρ is called the
degree of the representation.

We focus most of our discussion on the finite group Sn. A few examples of representation on Sn:

1. The trivial representation ρ(n) maps each element of the symmetric group to 1. While this representation
may not not so interesting or useful, it will later play its role later.

2. The first-order permutation representation τ(n−1,1), given by the matrix [τ(n−1,1)(σ)]ij = 1{σ(j) = i}.
The images are the familiar n× n permutation matrices.

3. The alternating representation of Sn, ρ(1,...,1) , which maps σ to +1 if σ can be written as the composition
of an even number of transpositions, and −1 otherwise.

In the above example ρ indicates that that the representation is irreducible, whereas τ indicates that it is not.
We define irreducibility below.

Irreducible representations
A linear subspace W ⊂ V is called G-invariant if gw ∈ W ∀g ∈ G,∀w ∈ W . The restriction of ρ to a
G-invariant subspace is called a subrepresentation. A representation ρ is said to be irreducible if it has
only trivial subrepresentations (subrepresentations based on trivial subspaces, V and {0}). Otherwise, the
representation is reducible and can be factored into a direct sum of irreducible representations. The direct
sum of two representations ρ1 and ρ2 is a new representation defined as:

ρ1 ⊕ ρ2(σ) ,
(
ρ1(σ) 0

0 ρ2(σ)

)

For a finite group, there are only a finite number of irreducible representation up to equivalence. That is, for
any representation τ , there ∃ a matrix C s.t.

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 3 of 9)

C−1 · τ(σ) · C =
⊕
ρ∈Γ

zρ⊕
j=1

ρ

where Γ is the set of all distinct irreducible representations of group G, and zρ is the number of times ρ
appears in the direct sum. C is sometimes referred to as a similarity transform.

We leave it as an exercise to the reader to decompose ρ(2,1) from our example into a direct sum of two
irreducible representations.

Now, we explain the reason for the subscripts in the represenations above.

3.2 Ferrer’s diagrams

The subscript in the above representations stands for a partition. A partition of n is a tuple of positive
integers (λ1, ..., λ`) that sum to n. For convenience, assume λ1 ≥ · · · ≥ λ`.

We will find it useful to visualize a partition using a Ferrer’s diagram. For example, for partitions of n = 5,

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1) (1,1,1,1,1)

their respective Ferrers diagrams are

Paritions of n form a partial order given the following dominance ordering: λDµ if for each i,
i∑

k=1
λk ≥

i∑
k=1

µk.

This order will become useful later when we consider the Fourier transform. The ordering for n = 6 is shown
as an example:

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 4 of 9)

A Young tabloid is an assignment of numbers 1, ..., n to the boxes of a Ferrers diagram; each row is considered
an unordered set. A variation where each row is an ordered tuple is called a Young tableaux. A Young tableaux
is standard if its entries are increasing to the right along rows and down columns.

These combinatorial objects are useful for the following reason: Every irreducible representation of Sn
corresponds to some partition of n. There is in fact an algorithm to compute the irreducible representation
corresponding to a given partition; this makes use of standard Young tableaux for the given partition. The
idea of the algorithm is to first compute the irreducible representation at adjacent transpositions 1; as every
permutation is a composition of adjacent transpositions, we can then simply multiply the corresponding
representation matrices since representation is homomorphic.

3.3 Fourier transform

We are now ready to define the Fourier transform on a finite group. We define the Fourier transform of
f : G→ R at the representation ρ to be

f̂ρ =
∑
σ

f(σ)ρ(σ)

Note that now a Fourier transform coefficient is not necessarily a single number, but rather a matrix.

Just like on the real line, the value of f at any element of G can be represented using the Fourier transform
coefficients as follows:

f(σ) = 1
|G|

∑
λ

dρλTr[f̂Tρλ · ρλ(σ)]

where λ indexes over the collection of all irreducibles of G.

We revisit some of our examples of representation earlier to give some intuition of what the coefficients
represent:

1For more details, see Appendix B of the paper

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 5 of 9)

1. The trivial representation ρ(n) corresponds to the constant basis function. Recall that for functions
on the real line the Fourier transform at the zero frequency gives the DC component of a signal. The
analog here is that the Fourier transform of f at the trivial representation ρ(n) is f̂ρ(n) =

∑
σ
f(σ). If f

is a probability distribution, then f̂ρ(n) = 1.

2. The first-order permutation representation τ(n−1,1) has the following Fourier transform:

[f̂τ(n−1,1)]ij =
∑
σ∈Sn

f(σ)[τ(n−1,1)]ij =
∑
σ∈Sn

1{σ(j) = i} =
∑

σ:σ(j)=i

f(σ)

The (i, j)-th element of the transform is the marginal probability that a random permutation drawn
from the original distribution maps element j to i. (and maps the other n− 1 elements to among them,
but this is redundant since permutation is bijective)
Similarly, if we consider representations τ(n−2,2), corresponding to tabloids of shape λ = (n − 2, 2),
we can find second-order marginals such as the marginal probability that {1, 2} maps to {2, 4}. This
particular example is unordered, but if we want to instead answer ordered questions such as what
is the marginal probability that {1} maps to {2} and {2} maps to {4}, we can instead look at the
representations corresponding to tabloids of shape λ = (n− 2, 1, 1). This can be visualized as follows:

3. The representation τ(1,...,1) (note, this is not the alternating representation ρ(1,...,1)) exactly recovers
the original probabilities P (σ).

In general, Fourier coefficients of a representation τµ can be viewed as the marginal probabilities of Young
tabloids of shape λ. Say that we fixed an ordering2 on the set of possible Young tabloids of shape λ,
{t1}, {t2}, ... and define the permutation representation τλ(σ) as the following matrix:

[τλ(σ)]ij =
{

1 if σ({tj}) = {ti}
0 if not

Then, if P (σ) is a probability distribution, then[
P̂τλ

]
ij

=
∑
σ∈Sn

P (σ)[τλ(σ)]ij

=
∑

σ:σ({tj})={ti}

= P (σ : σ({tj}) = {ti})

Hence, marginal probabilities corresponding to Young tabloids of shape λ are given by the Fourier transform
at the representation τλ.

Now, it is often possible to reconstruct lower order marginals by summing over the appropriate higher order
marginal probabilities, so there is some redudancy in the above representations τλ. But we can construct a
partially ordered set of representations so that ρλ captures all the information at the ‘frequency’ λ which was
not already captured at lower frequency representations ρµ where µ D λ in the partial order given by the

2It is unclear from the paper how one might define such an ordering that is useful

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 6 of 9)

dominance hierarchy. These representations ρλ turn out to be exactly the irreducible representations of the
group Sn.

This idea is precisely presented in the following:

Theorem 1. For each partition λ there exists a matrix Cλ s.t. CTλ · τλ(σ) · Cλ =
⊕
µDλ

Kλµ⊕̀
=1
ρµ(σ)

The multiplicities Kλµ are called the Kostka numbers and can be computed using Young’s rule. It follows
easily from the definition that we can compute the Fourier transform at τλ as follows:

f̂τλ = Cλ ·

⊕
µλ

Kλµ⊕
`=1

f̂ρµ

 · CTλ
The dimensions of ρλ is polynomial for fixed k; roughly O(n2k) storage is required to maintain kth order
marginals. Hence, it is possible to compactly summarize distributions over permutations by saving only the
low-frequency terms of the Fourier transform.

4 Algorithms in the frequency domain

We have found a way to compactly represent distributions over permutations in the Fourier domain. However,
if we were to naively use inference algorithms, we would have to constantly transform the coefficients back
and forth into the Fourier domain, and even with FFT, this is prohibitively expensive as the transform runs
in O(n! logn!).

We revisit the forward algorithm from section 1, but this time we express its operations entirely in the
frequency domain, which will allow us to avoid the above transformation cost.

4.1 Prediction/Rollup

The prediction/rollup step can be rewritten as a convolution3 of two distributions:

P (σ(t+1)) =
∑
σ(t)

P (σ(t+1)|σ(t)) · P (σ(t))

=
∑

(σ(t),π(t)):σ(t+1)=π(t)·σ(t)

Q(t)(π(t)) · P (σ(t))

=
∑
σ(t)

Q(t)(σ(t+1)()) · P (σ(t))

= [Q(t) ∗ P](σ(t+1))

where Q(t) ∗ P is defined as the convolution. By the convolution theorem, [Q̂ ∗ P]ρ = Q̂ρ · P̂ρ, we can simply
update P̂ (t+1)

ρ ← Q̂
(t)
ρ · P̂ (t)

ρ in the Fourier domain.
3This is an extension of the familiar notion of convolutions, where addition and subtraction become function composition and

inverse

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 7 of 9)

Computing transforms for particular models
One reasonable question from an implementer’s point of view is how we might compute the Fourier transforms
for a given Q. Using the definition, Q̂ρ =

∑
σ
Q(σ) · ρ(σ). The concern is that in order to compute the

transform at a representation, we have to sum over all elements of Sn; this is exponential, and was in fact the
very reason why we started studying this problem!

Luckily, for particular models Q we can more easily compute Q̂ρ without iterating over all elements of Sn.
One common model is the pairwise mixing model, defined as

Qij(π) =

 r if π = ε
1− r if π = (i, j)
0 if not

This models the event where elements i and j swap their identities with probability 1 − r. The Fourier
coefficient for ρλ is simply [Q̂ij]ρλ = rI + (1− r)ρλ((i, j)). There are several other common models that arise
in practice that the paper discusses.

One nice property of convolution operation is that it acts pointwise, meaning that the value of convolution
of two distributions at an element is affected only by the corresponding values of each distribution at the
element. This is nice because if we only keep the low-order transforms they will propagate only to those same
levels; we say that the prediction/rollup operation does not increase the representational complexity.

4.2 Conditioning

Unfortunately, we don’t have this nice property for the conditioning step. To get an intuition for why, as an
example consider the first-order marginal probabilities:

Pr(Alice is at Track 1 or Track 2) = 0.5
Pr(Bob is at Track 1 or Track 2) = 0.5

If we then make the following first-order observation:

Pr(Cathy is at Track 1 or Track 2) = 1

then we can infer that Alice and Bob cannot possibly both occupy Tracks 1 and 2. That is,

Pr({Alice, Bob} are on Tracks {1, 2 }) = 1

After conditioning on the new observation, we are left with a second-order marginal despite that both the
prior and likelihood functions were known up to first order. The example shows that conditioning can smear
information from low-order Fourier coefficients to high-order coefficients.

Recall that the conditioning operations is: P (σ|z) = 1
ZP (z|σ) ·P (σ). In order to express this operation in the

Fourier domain, we need to be able to translate the multiplication of two functions into the Fourier domain.
The idea is to manipulate the function f(σ)g(σ) so that it looks like the result of an inverse Fourier transform.
After some manipulations using Kronecker products of matrices, we arrive at the following result 4

4For proof, see Proposition 10, p. 1024 of Huang et al.

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 8 of 9)

Theorem 2. Let f̂ , ĝ be the Fourier transforms of functions f and g, and for each ordered pair of irreducibles
(ρλ, ρµ), define Aλµ , C−1

λµ · (f̂ρµ ⊕ ĝρµ) · Cλµ. Here, Cλµ is a similarity transform s.t. for any σ ∈ G,

C−1
λµ · [ρλ ⊗ ρµ](σ) · Cλµ =

⊕
ν∈Γ

zλµν⊕
`=1

ρν(σ)

Then, the Fourier transform of the pointwise product fg is:

[f̂g]ρν = 1
dρν |G|

∑
λµ

dρλdρµ

zλµν∑
`=1

A
(v,`)
λµ

In order to apply the above theorem, we need to know zλµν , which are called the Clebsch-Gordan series,
and the similarity transforms Cλµ, which are called the Clebsch-Gordan coefficients. There are no known
analytical formulas for finding the entire Clebsch-Gordan series and coefficients. Luckily, we only need to
compute them once for a particular group, and just store them in a look up table.

4.3 Bandlimiting and projection

For efficiency, we can maintain the Fourier transform at a reduced set of coefficients during the above inference
process. If the conditioning step introduces new higher order terms, we simply discard them; this is where
error is introduced into the system. Empirical evidence shows that if the distribution is relatively ‘smooth’
most of its energy is stored in the low-order Fourier coefficients, so we don’t accumulate much error.

One concern is that the Fourier transform we have at the end of the inference process might correspond
to marginal probabilities that are inconsistent or even negative. Let us refer to the space of coefficients
corresponding to consistent joint distributions as the marginal polytope.

In order to deal with this issue, after each conditioning step, we project the approximate distribution f to
the nearest function in a relaxed marginal polytope. that is closest in the L2 norm, by solving the following
quadratic program:

minimize
∑
λ∈Λ

dλTr
[
(f̂ − f̂proj)Tρλ(f̂ − f̂proj)ρλ

]
subject to

[
f̂proj

]
(n)

= 1CλMIN ·
 ⊕
µDλMIN

KλMINµ⊕
`=1

f̂projρµ

ij

≥ 0 ∀(i, j)

The objective expresses the distance between our original function f and our projection fproj in terms of their
Fourier coefficients using the Plancherel Theorem. The first constraint requires that fproj is a valid probability
distribution (i.e. it sums to 1), and the second set of constraints states that f̂projρλMIN

has all nonnegative
entries. From our discussion in section 3.3, this means that marginal probabilities are nonnegative.

Even after projection, there might not necessarily exist a joint probability distribution on Sn consistent with
those marginals.

Algorithmic Machine Learning - Fourier Theoretic Probabilistic Inference over Permutations (page 9 of 9)

5 Conclusion

Huang et al. was able to efficiently perform inference operations over probabilitiy distribution on the
symmetric group by expressing their operations entirely in the Fourier domain, and maintaining only a
limited set of low-order terms. The mathematical machinery used in this paper (most of which were actually
introduced before this paper) are intriguing, but are quite heavy duty. In particular, translating their
algorithms into a usable implementation appears to be a highly non-trivial task, even considering that they
provide several algorithms for working with representation matrices.

Also, the paper could definitely provide more detail on how the resulting output of their inference operations
is actually used to predict the identity mapping for their real camera network experiment, given the fact that
there is not necessarily exist a joint probability distribution on Sn consistent with the final marginals.

References

Images are from the original paper: http://jmlr.org/papers/volume10/huang09a/huang09a.pdf

http://jmlr.org/papers/volume10/huang09a/huang09a.pdf

	Introduction
	Motivation
	Random walks and the Forward algorithm

	Fourier Transform on Finite Groups
	Group Representation
	Ferrer's diagrams
	Fourier transform

	Algorithms in the frequency domain
	Prediction/Rollup
	Conditioning
	Bandlimiting and projection

	Conclusion

